

Ground Investigations Ireland Ltd., Catherinestown House, Hazelhatch Road, Newcastle, Co Dublin. Tel: 01 601 5175 / 5176 | Fax: 01 601 5173 Email: info@gii.ie | Web: gii.ie

Ground Investigations Ireland

Hickeys 43 Parkgate Place

Ground Investigation Report

DOCUMENT CONTROL SHEET

Project Title	Hickeys 43 Parkgate Place
Engineer	ARUP
Client	Ruirside Developments Ltd
Project No	8507-02-19
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
F	Final	S Kealy	C Finnerty	F McNamara	Dublin	14 th January 2020

Ground Investigations Ireland Ltd., Catherinestown House, Hazelhatch Road, Newcastle, Co Dublin. Tel: 01 601 5175 / 5176 | Fax: 01 601 5173 Email: info@gii.ie | Web: gii.ie

CONTENTS

1.0	Preamble
2.0	Overview3
2.1.	Background3
2.2.	Purpose and Scope3
3.0	Subsurface Exploration4
3.1.	General4
3.2.	Foundation Pits4
3.3.	Slit Trenches4
3.4.	Window Sampling4
3.5.	Cable Percussion Boreholes4
3.6.	Rotary Boreholes5
3.7.	Permeability Testing6
3.8.	Surveying6
3.9.	Geophysical Survey6
3.10.	Groundwater and Gas Monitoring Installations6
3.11.	Laboratory Testing7
4.0	Ground Conditions7
4.1.	General7
4.2.	Groundwater8

APPENDICES

Appendix 1	Site Location Plan
Appendix 2	Foundation Pit Records
Appendix 3	Slit Trench Records
Appendix 4	Window Sample Records
Appendix 5	Borehole Records
Appendix 6	Laboratory Test Records
Appendix 7	Groundwater Monitoring
Appendix 8	Permeability Test Records
Appendix 9	Geophsyical Report

1.0 Preamble

On the instructions of ARUP Consulting Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd., between March and June 2019 at the site of the residential and commercial development at 43 Parkgate Place, Dublin 8.

2.0 Overview

2.1. Background

It is proposed to construct a new mixed purpose development with associated services, access roads and car parking at the proposed site. The site is currently occupied by a commercial building and is situated in at No. 43 Parkgate Place. The proposed construction is envisaged to consist of piled foundations and conventional pavement make up with some local excavations for services and plant.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out Asbestos Tile removal at all internal exploratory hole locations
- Carry out 5 No. Foundation Inspection Pits to determine existing foundation details
- Carry out 1 No. Slit Trench to expose existing services and determine a suitable location for a borehole
- Carry out 18 No. Window Sample Boreholes to recover soil samples
- Carry out 4 No. Cable Percussion boreholes to a maximum depth of 7.6m BGL
- Carry out 4 No. Rotary Core follow on Boreholes to a maximum depth of 15.60m BGL
- Carry out 3 No. Rotary Core Boreholes to a maximum depth of 17.0m BGL
- Installation of 10 No. Groundwater monitoring wells
- Carry out 2 No. Permeability tests
- Installation of 3 No. Gas monitoring caps
- Geophysical Survey
- Geotechnical & Environmental Laboratory testing
- Issue of AGS Data
- Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling. The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Foundation Pits

The foundation inspection pits were excavated at the locations shown in the exploratory hole location plan in Appendix 1. The exposed foundations were logged and sketched prior to backfilling and reinstatement. The logs and sketches are provided in Appendix 2 of this Report.

3.3. Slit Trenches

The slit trench were excavated using a 3.5 tonne tracked excavator at the location shown in the exploratory hole location plan in Appendix 1. The trench was excavated to locate any buried services and to determine a suitable location to carry out a borehole. The logs and sketches are provided in Appendix 3 of this Report.

3.4. Window Sampling

The window sampling was carried out at the locations shown in the location plan in Appendix 1 using a Tecop Tec 10 percussion drilling rig. At the location of WS116 the window sample was not carried out due to encountering an underground chamber. The window sampling consists of a 1m long steel tube with a cutting edge and an internal plastic liner which is mechanically driven into the ground utilising a 50kg weight falling a height of 500mm. Upon completion of the 1m sample, the tube is withdrawn and the plastic liner removed and sealed for logging and sub sampling by an Engineering Geologist. The tube is replaced in the borehole and a subsequent 1m sample can be recovered. Occasionally outer casing or a reduced diameter tube is utilised to enable the window sample to progress in difficult drilling conditions. Geotechnical or environmental soil samples can be recovered from each of the liners following logging. The window sample records are provided in Appendix 4 of this Report.

3.5. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non cohesive soils and a clay cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments

removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata. Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 5 of this Report.

3.6. Rotary Boreholes

The rotary coring was carried out by a track mounted T44 Beretta rig at the locations shown on the location plan in Appendix 1. The rotary boreholes were completed from the ground surface or alternatively, where noted on the individual borehole log, from the base of the cable percussion borehole where a temporary liner was installed to facilitate follow-on rotary coring. During the sequence of rotary coring two different core diameters were used. BH101, BH104, BH106 and BH107 were cored using a 146mm bit producing cores of 102mm diameter. BH102, BH103 and BH105 were cored using a 95.76mm bit producing cores of 64mm diameter.

The T44 Beretta is equipped with rubber tracks which allow for short travel on pavement surfaces avoiding any damage to the surface. The T44 Beretta utilises a triple tube core barrel system operated using a wireline drilling process. The outer barrel is rotated by the drill rods and at its lower end, carries the coring bit. The inner barrel is mounted on a swivel so that it does not rotate during the process. The third barrel or liner is placed within the second one to retain the core intact and to preserve as much as possible the fabric of the drilling stratum. The core is cut by the coring bit and passes to the inner liner. The core is brought up to the surface within the inner barrel on a small diameter wire rope or line attached to the "overshoot" recovery tool which is then placed into a core box in order of recovery. A drilling fluid, typically air mist or water flush is passed from the surface through hollow drill rods to the drill bit, and is used to cool the drill bit. Temporary casing is used in some situations to support unstable ground or to seal off fissures or voids. It should be noted that the rotary coring can only achieve limited recovery in overburden, particularly granular or weakly cemented strata due to the flushing medium washing away the cohesive fraction during coring. The recovery achieved, where required is noted on the borehole logs and core photographs are

provided to allow assessment of the core recovered. The rotary borehole logs are provided in Appendix 5 of this Report.

3.7. Permeability Testing

Permeability tests were carried out in the borehole. This consisted of a rising head test, which were carried out in BH101 and BH106. The rising head test was carried out in borehole as specified by the Consulting engineer and requires the pumping out of the groundwater encountered in the borehole. The initial groundwater levels are recorded, and pumping begins, with the volume of groundwater removed recorded. Once the borehole is emptied, the rise in water level with time in the borehole was recorded over a 2 hour test period, allowing for the calculation of the rate of groundwater ingress. The results of the permeability tests are provided in Appendix 8 of the Report.

3.8. Surveying

The exploratory hole locations have been recorded using a Geomax Zenith System which records the coordinates and elevation of the locations to either ITM or Irish National Grid as required by the project specification. It was not possible to establish by GPS an easting, northing and elevation for the internal exploratory holes. The easting and northing have been determined using the location plan in GIS format. The elevation of the exploratory holes were estimated at 4.25mOD. This was based on elevation levels taken outside of the building and a measurement taken to the top of the finished floor level. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.9. Geophysical Survey

A geophysical survey was carried out be APEX Geoservices to aid in the identification of the underlying strata. The survey consisted of seismic refraction and MASW S – wave velocity profiling. The results of this survey are provided in Appendix 9 of this report.

3.10. Groundwater and Gas Monitoring Installations

Groundwater Installations were installed upon the completion of all the boreholes to enable sampling and the determination of the equilibrium groundwater level. Gas monitoring installations were installed in WS110, WS114, and WS117 level. The typical groundwater monitoring installation consists of a 50mm HDPE slotted pipe with a pea gravel response zone and bentonite seal installed to the Engineers specification. Where required the standpipe is sealed with a gas tap and finished with a durable steel cover fixed in place with a concrete surround. The installation details are provided on the exploratory hole logs in the appendices of this Report.

3.11. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental testing, including Waste Acceptance Criteria (WAC) was carried out by Jones Environmental Laboratory in the UK.

Chemical testing including Organic Matter Content, Chloride content, pH and Sulphate was carried out by Derwentside Environmental Testing Services Limited in the UK.

Geotechnical testing consisting of Moisture Content, Atterberg limits and Particle Size Distribution (PSD) was carried out by Prosoils Geotechnical Laboratory in the UK.

Rock strength testing including Point Load (Is₅₀) and Unconfined Compressive Strength (UCS) testing was carried out in Trinity College Dublin's Geotechnical Laboratory

The results of the laboratory testing are included in Appendix 6 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were consistent across the site and are generally comprised;

- Surfacing
- Made Ground
- Cohesive Deposits
- Granular Deposits
- Residual Rock
- Weathered Rock
- Bedrock

SURFACING: Concrete surfacing was present in the majority of the exploratory holes to a max depth of 0.25m BGL with the exception of BH105 and WS113 were the concrete was encountered to 1.30m BGL and 1.10m BGL respectively. Tarmac was encountered in BH102 and BH103 to a max depth of 0.3m BGL.

MADE GROUND: Made Ground deposits were encountered beneath the Surfacing. The depth of Made Ground varied across the site and was encountered to depths of 1.20m to 5.0m BGL. These deposits were described generally as *brown sandy slightly gravelly CLAY with frequent cobbles and boulders or a brown clayey angular to sub-angular fine to coarse Gravel. These deposits contained occasional to frequent fragments of concrete, red brick, ceramic, mortar, slag and plastic.*

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Made Ground and were described typically as *soft* or *firm brown sandy gravelly CLAY with occasional cobbles and boulders* or a *firm grey slightly gravelly silty CLAY*. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the cohesive matrix. These deposits had some, occasional or frequent cobble and boulder content where noted on the exploratory hole logs. A lower cohesive deposit was encountered in BH102, BH103 and BH106 and was typically described as a *dark grey slightly sandy slightly gravelly silty CLAY*.

GRANULAR DEPOSITS: The granular deposits were encountered the base of the cohesive deposits and were typically described as Grey brown clayey sandy sub rounded to sub angular fine to coarse GRAVEL with occasional cobbles and rare boulders. The secondary sand/gravel and silt/clay constituents varied across the site and with depth while occasional or frequent cobble and boulder content also present where noted on the exploratory hole logs. At the location of WS101, WS102A, WS103, WS104, WS106 and WS107 a SAND deposit was encountered beneath the cohesive deposit and was typically described as a brown slightly clayey gravelly fine to coarse SAND with occasional cobbles.

Based on the SPT N values the deposits are typically loose and medium dense. A significant groundwater strike was noted in the boreholes on encountering the granular deposits.

RESIDUAL ROCK: Residual Rock was encountered in BH105 as a significant layer within the competent rock between the depths of 10.30m to 11.40m BGL. The Residual rock was recovered as a *hard very gravelly CLAY with relic bedding.*

WEATHERED BEDROCK: Weathered Rock was encountered in BH101. This material was recovered typically as *cobbles of Limestone/Mudstone* some clay and sand were also present with the rock mass either from weathering or as infilling to fractures.

BEDROCK: The rotary core boreholes recovered *Medium strong to strong grey/dark grey fine to medium grained laminated LIMESTONE interbedded with weak black fine grained laminated calcareous MUDSTONE*. This is typical of the Calp Formation. Rare visible pyrite veins were noted during logging which are typically present within the Calp Limestone.

The depth to rock varies across the site from 6.40m BGL in BH102 to 8.50m BGL in BH105. The total core recovery is good, typically 100% with some of the uppermost runs dropping to 80 or 90%. The SCR and RQD both are relatively poor in the upper weathered zone, often recovered as non-intact, however both indices show an increase with depth in each of the boreholes.

4.2. Groundwater

Groundwater strikes are noted on the exploratory hole logs where they occurred and where possible drilling was suspended for twenty minutes to allow the subsequent rise in groundwater to be recorded. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the tide, time of year,

rainfall, nearby construction and other factors. For this reason, standpipes were installed in all of the Boreholes and in WS110, WS117 and WS114 to allow the equilibrium groundwater level to be determined. Gas caps were also installed in the window sample installations. The groundwater monitoring is included in Appendix 7 of this Report.

APPENDIX 1 - Site Location Plan

734425.000

734350.000

APPENDIX 2 – Foundation Pit Records

	Gro	und In	vestigati www.gi	Site Trial Pi Hickeys 43 Parkgate Place FIP10			Trial Pit Number FIP101				
Machine:J Method :T	CB 3CX irial Pit	Dimens 3.00m	sions x 1.80m		Ground	Leve 3.62	l (mOD)	Client ARUP		8	Job Number 507-02-19
		Locatio 71	on 13608.9 E 734345	5.8 N	Dates 11	1/04/2	019	Project Contractor Ground Investigations Irel	and	:	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Re	cords	Level (mOD)	C (Thi	Depth (m) ckness)	Description		L	Rater Nonege.
					3.52		(0.10) 0.10 (0.20) 0.30	MADE GROUND: Dark br gravelly Topsoil with grass MADE GROUND: Concret	own slightly sandy slightly rootlets		
0.50	EN					-	(0.50)	Clay with rootlets and som	own slightly sandy very grav le redbrick and mortar fragm	ients	
1.00	В				2.82	- - - - - - - - -	0.80	MADE GROUND: Dark br sandy very clayey angular Gravel with many slag, rec some glass and ash fragm	own mottled light grey slight to subangular fine to coarse Ibrick and mortar fragments ients	ly e and	
1.50	EN					-	(1.00)				
2.00	В				1.82	 	1.80 (0.50)	MADE GROUND: Brown s Clay with some charcoal a rootlets and shell fragmen	slightly sandy slightly gravell nd redbrick fragments and o ts	y old	
2.50	EN				1.32		2.30 (0.50)	Soft brown very sandy CL	AY	······	<u></u>
					0.82		2.80	Brown very sandy slightly	clayey silty GRAVEL		
3.50 3.50	B EN						(1.00)				
			slow ingress(1) rose to 2.50m ir	at 3.80m, 20 mins.	-0.18	-	3.80	Complete at 3.80m		**	<u>·</u> ∇1
Plan			· ·		•	•	. '	Remarks	pundation		
								Groundwater encountered a Side wall collapse Trial plt backfilled on comple	t 3.80m BGL etion		
	· ·		· ·	•			•				
							. 5	Scale (approx) 1:25	Logged By DML	Figure N 8507-02-	No. -19.FP101

GROUND INVESTIGATIONS IRELAND	Ground Investigations Ireland Ltd									Site Trial Num Hickeys 43 Parkgate Place FIP		
Machine : J	CB 3CX rial Pit	Dimens 2.70m	sions x 0.80m			Ground Level (mOD) 3.95			Client ARUP			Job Number 8507-02-19
		Locatio 71	on 3616.4 E	734366	.6 N	Dates 1 ⁷	1/04/2	2019	Project Contractor Ground Investigations Irela	and		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	I	Field Re	cords	Level (mOD)	Level Depth (mOD) (m) (Thickness)		D	escription		Legend Safe
0.50	EN					3.85		(0.10) 0.10 (1.70)	Reinforced Concrete MADE GROUND: Dark br angular to subangular fine boulders, redbrick, granite	own slightly sandy very clay to coarse Gravel with limes block and mortar fragments	rey stone s	
1.50	EN					2.15		1.80	Soft brown slightly gravely rootlet fragments	y sandy CLAY with shell and	1	
2.50 2.50	B EN					0.95		(1.20)				
3.50	EN		slow ing	gress(1) ;	at 3.20m.	0.45		(0.50) 3.50	Complete at 3.50m	y fine to coarse SAND		⊻1
Plan							•	.	Remarks Trial pit carried out to expos	e foundation		I
							•		Groundwater encountered a Side wall collapse Trial pit backfilled and reinst	at 3.80m BGL ated on completion		
			•				•					
 		•	•		·							
									Scale (approx) 1:25	Logged By DML	Figure 8507-0	• No. 2-19.FIP102

Machine UC-R SICK Method : Tru P3 Dimensions (mmm) Dimensions (mmm) Organity (mmm) Project Contractor (mmm) Aph Method (mmm) Aph Method (mmm)	GROUND INVESTIGATIONS IRELAND	Grou	nd In	vestigatior www.gii.ie	ns Irel e	Site Trial Pit Number Hickeys 43 Parkgate Place FIP103			Trial Pit Number FIP103			
Lease in 1713000 6 E 734091 9N Date 10000 (minicipations included) Project Contractor Control including Description Leagent 2000 (minicipations included) Project Contractor Control included Project	Machine : Jo	CB 3CX rial Pit	Dimens 2.70m	ions < 0.80m		Ground	Level (mO 4.25	D)	Client ARUP		Job Number 8507-02-19	
Opp:// Sample / Tasts Weigr (m) Field Records /w/00 Description Lagon Pield 1 0 1 0 1 0			Locatio	n 3690.6 E 734391.9 I	N	Dates 11	/05/2019		Project Contractor Ground Investigations Irel	and		Sheet 1/1
100-100 B 100-100 B 100-100 Controls Controls <td>Depth (m)</td> <td>Sample / Tests</td> <td>Water Depth (m)</td> <td>Field Reco</td> <td>rds</td> <td>Level (mOD)</td> <td>Depth (m) (Thicknes</td> <td>ss)</td> <td colspan="3">Description</td> <td>Kater Kater</td>	Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	rds	Level (mOD)	Depth (m) (Thicknes	ss)	Description			Kater Kater
. .	1.00-1.00 1.90-1.90 Plan . 	в в в				4.13 3.85 2.65 2.35		2) 2 8) 0 0 0) 00 0 0 0 0 0 0 0 0 0 0 0 0 0	Concrete MADE GROUND: Grey sli MADE GROUND: Grey br with frequent sub-rounded fragments of red brick, con MADE GROUND: Brown s with rootlets and occasion and rare fragments of red Complete at 1.90m Complete at 1.90m	ghtly sandy angular Gravel own slightly clayey sandy G I to angular cobbles and frea ncrete, metal and wood slightly clayey sandy gravelly al sub-angular to angular co brick e foundation td	y Clay bbles	
. .												
	· ·	· ·		· ·	· ·							
								s	cale (approx)	Logged By	Figur	e No.

	Grou	nd Inv	vestigation www.gii.ie	s Ireland	Ltd	Site Hickeys 43 Parkgate Place	9	Trial Pit Number FIP104A
Machine : Jo	CB 3CX rial Pit	Dimensi 2.90m x	ons 1.30m	Ground	Level (mOD) 3.67	Client ARUP		Job Number 8507-02-19
		Location 713	1 596.9 E 734391.8 N	Dates 11	/05/2019	Project Contractor Ground Investigations Ireland		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Record	ls (mOD)	Depth (m) (Thickness)	Description		Kater Sater
				3.50	(0.17) 0.17	Concrete MADE GROUND: Dark bro occasional red brick and n	own sandy gravelly Clay wi nortar fragments	th
0.50-0.50	т				 (1.13) 			
1.00-1.00	Т			2.37	- - - - 1.30	Complete at 1.30m		
Plan						Remarks		
Plan .				• •	'	Trial pit carried out to expose No groundwater encountere	e foundation d	
		•				Trial pit stable Trial pit backfilled and reinst	ated on completion	
· ·	· ·		· ·	• • •	· ·			
		·			s	Scale (approx)	Logged By	Figure No.

	Grou	und In	vestigatic www.gii.	Site Tri Nu Hickeys 43 Parkgate Place FIP			в			
Machine : J Method : T	CB 3CX rial Pit	Dimensi 2.90m x	ons 1.55m		Ground	Level (mOD) 3.67	Client ARUP			9
		Location 713	ו 3596.9 E 734391.8	B N	Dates 11	/05/2019	Project Contractor Ground Investigations Irel	and	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Rec	ords	Level (mOD)	Depth (m) (Thickness)) Description		Legend	Water
0.50.0.50	T				3.50	(0.17) 0.17 	Concrete MADE GROUND: Dark br clayey angular to sub-ang frequent slag fragments, r	own/black slightly sandy ve ular fine to medium Gravel ed brick, ropes and wire	ry with	
1.00-1.00	Т					- - - - - - - - - - - - - - - - - - -				
					2.12	 	Complete et 1 55m			
							Complete at 1.55m			
Plan	· ·	•	· ·			· ·	Remarks			
							Trial pit is a continuation of No groundwater encountered Trial pit stable Trial pit backfilled and reinst	re 104 - See associated Fo	unualion Pit log	
· ·		•	· ·							
						:	Scale (approx) 1:25	Logged By DML	Figure No. 8507-02-19.FIP104	4E

GROUND INVESTIGATIONS IRELAND	Grou	nd Inv	vestigations www.gii.ie	Ireland	Ltd	Site Trial Pit Number FIP105		
Machine : Jo	CB 3CX rial Pit	Dimensio 2.30m x	ons 0.90m	Ground	Level (mOD) 3.65	Client ARUP		Job Number 8507-02-19
		Location 713	596.6 E 734379.8 N	Dates 12	1/05/2019	Project Contractor Ground Investigations Ireland		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	Kater K	
1.20-1.20	Т			3.48	(0.17) 0.17 (1.23)	Concrete MADE GROUND: dark red fine to coarse angular to s redbrick, slag, plastic and Complete at 1.55m	Idish brpwn sandy very clay ub-rounded Gravel with free glass fragments	ey juent
Plan .					••••	Remarks Trial pit carried out to expos	e foundation	
		•				Trial pit stable Trial pit backfilled and reinst	u ated on completion	
					<mark>.</mark>	Scale (approx) 1:25	Logged By DML	Figure No. 8507-02-19.FIP105

8507-02-19 Hickeys – Trial Pit Photographs

FIP101

FIP101

FIP101

FIP101

FIP101

FIP101

FIP102

FIP102

FIP102

FIP102

FIP102

FIP103

FIP104

FIP104A

FIP104A

FIP104B

FIP104A

FIP104B

FIP105

FIP105

FIP105

FIP105

APPENDIX 3 – Slit Trench Records

4.0

0.4

0.5

0.6

0.8

0.9

1.3

2.0

Service No	ø (m)	Colour- Material	Utility	Angle to trench	Co-ordinates	Elevation	
S1	0 100	Black Plastic	Fircom	85	713692.712	4 94	
51	0.100	Diack Tidotic	LIICOIII	00	734419.583	4.54	
\$2	0 100	Black Plastic	Fircom	85	713692.727	4 942	
52	0.100	Diack Tiastic	LIICOIII	05	734418.989	4.542	
63	0 100	Black Plastic	Fircom	85	713692.717	4 94	
00	0.100	Diack Trastic	LICOIII	00	713692.717	7.04	
S 4	0.100	Black Plastic	Fircom	85	713692.623	4 893	
04		Diack Trastic	LICOIII	00	734418.779	1.000	
85	0.200	Vollow and Rod Tilos	ESD	00	713692.544	4 794	
35	0.200	reliow and Red Tiles	ESD	90	734418.52	7./37	
					713692.475		
S6	0.200	Yellow and Red Tiles	ESB	90	734418.223	4.784	
97	0.200	Vollow and Rod Tilos	Eiroom	95	713692.368	4 959	
37	0.200	reliow and Red Tiles	Eliconi	65	734418.004	4.000	
60	0.000	Velley, and Dad Tiles		05	734417.813	4.937	
S8	0.200	reliow and Red Tiles	EIrcom	85	713692.285		

0.00) 0.
0.0	в 0.
0.4	0 0.
0.8	0 2.
	Foundwater
Su	Irface from/to
0.0	0 4.
3	

From (m)	To (m)	Description
0.00	0.08	Concrete
0.08	0.40	MADE GROUND: Grey brown slightly sandy clayey angular to sub-rounded fine to coarse Gravel
0.40	0.80	MADE GROUND: Brown mottled black slightly sandy gravelly Clay with many redbrick, mortar, ash and ceramic fragments
0.80	2.50	MADE GROUND: Dark grey brown slightly sandy gravelly Clay with ash, redbrick and mortar fargments

One we down to a	Y/N	Depth
Groundwater		

Sample Type	Sample Depth
Env	0.50
Env	1.00
Env	1.80
Env	2.50

8507-02-19 Hickeys –Slit Trench Photographs

ST101

ST101

ST101

ST101

ST101

ST101

ST101

ST101

APPENDIX 4 – Window Sample Records

	Grou	nd Inv	vestigations Ire	Site	Number			
A	Giùu		www.gii.ie	anu		Hickeys 43 Parkgate Place	WS101	
Machine : T Method : D S	hine : TEC OP 10 Dimensions hod : Drive-in Windowless Sampler		Ground	Level (mOD) 3.66	Client ARUP	Job Number 8507-02-19		
		Location 1 713606.9 E 734356.4 N		Dates 03/04/2019		Project Contractor Ground Investigations Ireland	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Kater Vater	
				3.56	(0.10) 0.10 (0.45)	CONCRETE MADE GROUND: Reddish brown slightly sandy clayey angular to subangular fine to medium Gravel with redbrick and mortar fragments 0.00-0.55m - Hand Pit		
0.50	EN B			3.11	0.55	MADE GROUND: Grey brown sandy very gravelly Clay with some old redbrick, mortar, slag and charcoal fragments		
1.00 1.00-2.00	EN B				- (1.05) 	1 00-2 00m - 65% Becovery		
				2.06	(0.40)	MADE GROUND: Light brown slightly sandy silty Clay with occasional charcoal and mortar fragments		
2.00 2.00-3.00	EN B			1.66	2.00	Soft light brown slightly sandy silty CLAY	× × ×	
					- (0.90) 	2.00-3.00m - 45% Recovery	× × ×	
3.00 3.00-4.00	EN B			0.76	- 2.90 - 2.90	Brown slightly clayey gravelly fine to coarse SAND with occasional cobbles		
					(1.10)	3.00-4.00m - 55% Recovery		
4.00	EN			-0.34	4.00	Complete at 4.00m		
Remarks Concrete co 0.00-0.55m	ring carried out prior BGL - Hand Pit	to hand pi	t			Scale (approx)	Logged By	
Window San	nple terminated at sc nple hole backfilled a	and re-insta	ated upon completion			1:25	DML	
						Figure 8507-02	No. 2-19.WS101	

GROUND INVESTIGATIONS IRELAND	Ground Investigations Ireland Ltd						Site		Number	
			www.gii.ie				Tickeys 45 Faikyale Flace		WS102	
Machine : T Method : D S	EC OP 10 rive-in Windowless ampler	Dimensio	ons	Ground Level (mOD) 3.90		nOD)	Client ARUP		Job Number 8507-02-19	
		Location	l	Dates	/04/2010	2	Project Contractor		Sheet	
		713	615.6 E 734368 N		10412010	,	Ground Investigations Ireland		1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Dept (m) (Thickn	th) iess)	Description		Legend	
0.04-1.20	В			3.81	- (0).09) 0.09	CONCRETE			
					- (0).31)	MADE GROUND:Brown sandy very clayey angular subrounded fine to coarse Gravel with some angula subangular cobbles and boulders 0.00-0.40m - Hand Pit	r to ar to		
				3.50	- (0.40	MADE GROUND: Dark grey mottled slightly sandy gravelly Clay with redbrick ash and slag fragments	very		
0.60	EN						0.40-1.00m - 100% Recovery	-		
					- (0	0.80)				
				0.70	- 		1.00-1.20m -100% Recovery			
1.20	EN			2.70	^ 	1.20	Obstruction due to Cobble or Boulder			
					- -		Complete at 1.20m			
					-					
					-					
					-					
					-					
					-					
					- -					
					-					
					-					
					-					
					- - -					
					-					
					-					
					-					
					<u> </u>					
					-					
					 -					
					-					
Remarks Concrete con 0.00-0.40m	ring carried out prior	to hand pit						Scale (approx)	Logged By	
Window San Window San	nple terminated at 1. nple hole backfilled a	20m BGL d ind re-insta	lue to Obstruction of cobble of the termination of terminatio of termination of termination o	r boulder				1:25	DML	
							-	Figure N	0.	

Ground Investigations Ireland Ltd						Site Hickeys 43 Parkgate Place	Number WS102A	
Machine : TEC OP 10 Dimensions Method : Drive-in Windowless Sampler		ls	Ground Level (mOD) 3.88		Client ARUP	Job Number 8507-02-19		
			16.3 E 734365.8 N	Dates 06	6/04/2019	Project Contractor Ground Investigations Ireland	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend S	
0.00-0.60	В			3.78	(0.10) 0.10 	CONCRETE MADE GROUND: Black slightly sandy very clayey fine to medium angular to sub-rounded Gravel with some slag and mortar fragments 0.00-0.60m - Handpit		
0.50-0.50	EN				-			
0.60-1.90	B				(1.80)	0.60-1.00m - 40% Recovery		
1.50-1.50	EN					1.00-2.00m - 65% Recovery		
1.90-2.90	В			1.98	1.90	Soft brown silty CLAY with occasional shell fragments.	×	
2.50-2.50	EN				(1.00)	2.00-3.00m - 85% Recovery		
2.90-4.00	В			0.98	2.90	Brown slightly clayey gravelly fine to coarse SAND		
3.50-3.50	EN				(1.10)	3.00-4.00m - 65% Recovery		
				-0.12	4.00	Complete at 4.00m	<u>, 2007 (2001)</u> 	
					F	<u> </u>		
Remarks Concrete co	ring coring carried ou - Hand pit	ut prior to ha	nd pit			Scale (approx) Logged By	
Window Sar Window Sar	nple terminated at so nple hole backfilled a	cheduled dep and re-instate	th ed upon completion			1:25	NM	
						Figure 8507-0	No. 2-19.WS102A	

GROUND INVESTIGATIONS IRELAND	Ground Investigations Ireland Ltd						Site Hickeys 43 Parkgate Place	Number WS103	
Machine : T			www.gii.ie			(
Method : D	rive-in Windowless ampler	Dimensio	ons	3.69		(mOD)	ARUP	Number 8507-02-19	
		Location		Dates			Project Contractor	Sheet	
	713607.3 E 734370.		607.3 E 734370.7 N	03	3/04/20	019	Ground Investigations Ireland	1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Do ((Thic	epth (m) ckness)	Description	Legend S	
0.00-3.50	В				-	(0.24)	CONCRETE	· · · · · · · ·	
				3.45	F	0.24	MADE GROUND: Brown slightly sandy very gravelly Clay		
					E	(0.26)			
					-	(0.30)	0.00-1.00m - 75% Recovery		
0.00				3.09	F	0.60	MADE GROUND: Dark brown black mottled orange sandy		
0.60	EN				 - 	(0.40)	clayey angular to subrounded fine to medium Gravel with redbrick, mortar and slag fragments		
				2.60	<u> </u>	1 00			
				2.03	-	1.00	MADE GROUND: Dark grey brown slightly sandy gravelly Clay with ceramic and mortar fragments		
					È.	(0.60)			
					F				
				0.00	-	4.00	1.00-2.00m - 80% Recovery		
1.60	EN			2.09	Ē	1.60	MADE GROUND: Dark grey brown sandy very clayey		
					È.		fragments	1	
					F				
					E				
					-				
					F				
					-				
					E	(1.70)			
					E		2.00-3.00m - 50% Recovery		
2.60	EN				-				
					È-				
					E				
					-				
					F				
				0.39	E	3 30			
				0.00	Ł	0.00	Soft to firm brown slightly sandy silty CLAY	×	
3 50	FN				F	(0.30)	3 00-4 00m - 75% Recovery	×	
3.50-4.00	B			0.09	E	3.60	Brown gravelly subangular to subrounded fine to coarse	×	
					F		SAND	6 - X 0	
3.80	EN				-	(0.40)		×+×	
				-0.31	E	4 00		×	
				-0.51	È.	4.00	Complete at 4.00m		
					È.				
					E				
					F				
					F				
					E				
					F				
					F				
Remarks					Ē				
Concrete car Hand pit car	ring carried out prior ried out to 0.50m BG	to hand					Scale (approx	:) By	
Window San Window San	nple terminated at so nple hole backfilled a	heduled de and re-insta	epth ated upon completion				1:25	DML	
							Figure 8507-	No.)2-19.WS103	

Ground Investigations Ireland Ltd						Site Hickeys 43 Parkgate Place		Number WS104
Machine : The Method : D	EC OP 10 rive-in Windowless ampler	Dimensio	ins	Ground	Level (mOD) 3.71	Client ARUP		Job Number 8507-02-19
		Location 713601.2 E 734391.1 N		Dates 30/03/2019		Project Contractor Ground Investigations Ireland		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kater Kater
0.14-2.00	B EN			3.57	(0.14) 0.14 (0.14) 0.14 (1.66)	CONCRETE MADE GROUND: Dark brown sandy clayey angula subangular fine to coarse Gravel with many redbric mortar, slag and charcoal fragments 0.00-1.00m - 62% Recovery	ır to k,	
1.50 2.00-2.80	EN			1.91	- 1.80 - (0.20) - 2.00	1.00-2.00m - 100% Recovery MADE GROUND: Brown slightly sandy slightly grav Clay with occasional mortar and charcoal fragment Soft brown SILT/CLAY	velly silty s	×
2.50	EN			1.11 0.91	- (0.60) - 2.60 - (0.20) - 2.80 - 2.80	2.00-3.00m - 100% Recovery Light brown slightly clayey slightly gravelly fine to co SAND Obstruction due to Cobble or Boulder Complete at 2.80m	oarse	
Remarks Concrete Co Hand pit carr Window San Window San	ring carried out prior ried out to 0.50m BG nple terminated at 2.8 nple hole backfilled a	to hand pit L 80m BGL d nd re-insta	ue to obstruction of cobble or ted upon completion	r boulder			Scale (approx) 1:25 Figure N 8507-02-	Logged By DML o. 19.WS104

	Grou	nd Inv	vestigations Ire	Site Hickeys 43 Parkgate Place		Number			
			www.gii.ie					WS10	05
Machine : T Method : D S	chine : IEC OP 10 Dimensions sthod : Drive-in Windowless Sampler		Ground Level (mOD) 4.00		Client ARUP		Job Number 8507-02-1		
		Location 713	ו 13601.3 E 734409.9 N	Dates 04/04/2019		Project Contractor Ground Investigations Ireland		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
Remarks				3.87		CONCRETE MADE GROUND: Brown concrete Cobbles and B with some slightly clayey sandy angular to subang to coarse Gravel Obstruction due to Asbestos and boulders Complete at 0.50m	oulders jular fine		d
0.00-0.50m l Window San Window San	BGL - Hand Pit nple terminated at 0.1 nple hole backfilled a	50m BGL (ind re-insta	on encountering asbestos an ated upon completion	d the obstr	uction of a bou	ulder	(approx) 1:25	DML	
							i igure N		

	Ground Investigations Ireland Ltd						Site Hickeys 43 Parkgate Place		Number	~
		1	www.gii.ie	1						_
Machine : T Method : D S	EC OP 10 rive-in Windowless ampler	Dimensi	ons	Ground	Leve 3.97	el (mOD)	Client ARUP		Job Number 8507-02-1	9
		Location 713	า 3601.4 E 734405 N	Dates 04	/04/2	2019	Project Contractor Ground Investigations Ireland		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	C (Thi	Depth (m) ckness)	Description		Legend	water
				3.81		(0.16) 0.16	CONCRETE MADE GROUND: Dark grey brown slightly clayey an to subrounded fine to medium Gravel with many old redbrick, tarmacadam, mortar and slag fragments	ngular		
0.40-1.00 0.50	BEN					(0.84)	0.00-1.00m BGL - 71% Recovery			
1.00-1.30	В			2.97		1.00 (0.30) 1.30	MADE GROUND: Brown slightly sandy very clayey a to subangular fine to coarse Gravel with occasional redbrick, mortar and slag fragments 1.00-1.30m BGL 100% Recovery	angular		
1.30	EN			2.67		1.30	Complete at 1.30m			
Remarks Concrete co Hand pit car Window Sar	ring carried out prior ried out to 0.50m BG nple terminated at 1.	to hand pi L 30m BGL	t due to obstruction of cobble or	boulder	<u> </u>		(a	Scale approx)	Logged By	
Window Sar	nple hole backfilled a	and re-insta	ated upon completion					1:25	DML	
								rigure N	0.	

	Grou	nd In	vestigations Ire	land	Ltd	Site Hickeys 43 Parkgate Place		Number WS106
	F0 0D 40	1	www.gii.ie					
Machine : 1 Method : D S	EC OP 10 rive-in Windowless ampler	Dimensi	ons	Ground	Level (mOD) 3.61	Client ARUP		Job Number 8507-02-19
		Locatio	ı	Dates		Project Contractor		Sheet
		713	3610.2 E 734399.4 N	30	//03/2019	Ground Investigations Ireland		1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend X
0.14-2.50	В			3.47	(0.14) 0.14	CONCRETE MADE GROUND: Brown slightly sandy gravelly C many mortar and red brick fragments	lay with	
0.50	EN				 (1.26) 	0.00-1.00m - 100% Recovery		
1.00	EN			2.21		MADE CROLIND: Dark brown black eligibility condu	, alightly	
					(0.70)	gravelly silty Clay with some slag and redbrick frag 1.00-2.00m - 80% Recovery	gments	
2.20	EN			1.51	2.10	MADE GROUND: Dark brown slightly sandy very Clay with some slag and redbrick fragments	gravelly	
2.50-3.00	В			1.11	2.50	Soft brown SILT/CLAY 2.00-3.00m - 90% Recovery		× <u> </u>
2.80	EN				(0.50)			××
3.00-4.00	В			0.61	3.00	Light brown slightly clayey slightly gravelly fine to SAND	coarse	× × × × × × × × × × × × × ×
					(1.00)	3.00-4.00m - 70% Recovery		
				-0.39	4.00	Complete at 4.00m		
Remarks Concrete Co Hand pit car	pring carried out prior ried out to 0.50m BG	to hand p	it				Scale (approx)	Logged By
Window Sar Window Sar	nple terminated at so nple hole backfilled a	ineduled d and re-inst	epin ated upon completion				1:25	DML
							Figure N 8507-02-	o. 19.WS106

GROUND INVESTIGATIONS IRELAND	Ground Investigations Ireland Ltd				l td	Site		Number
A	Ciou		www.gii.ie			Hickeys 43 Parkgate Place		WS107
Machine : T	EC OP 10	Dimensi	ions	Ground	Level (mOD)	Client		Job
Method : D S	Drive-in Windowless Sampler				4.64	ARUP		Number 8507-02-19
		Location	ı	Dates 30	/03/2019	Project Contractor		Sheet
	1	713	3602.9 E 734431.1 N		1	Ground Investigations Ireland		1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend S
Remarks				3.94		Tarmac with cobbles throughout	Scale	
Tarmac cut a Window Sar Window Sar	and broken out using nple refused due to o	consaw a	nd kango of concrete and boulders ated upon completion				(approx)	By
window Sal							1:25	DML
								10 10/07

GROUND INVESTIGATIONS IRELAND	Grou	nd In	vestigations Irel	land	Ltd	Site Hickeys 43 Parkgate Place		Number WS107A
Machine : The Method : D	EC OP 10 rive-in Windowless ampler	Dimensi	ons	Ground	Level (mOD) 4.25	Client ARUP		Job Number 8507-02-19
		Location 713	n 3596.8 E 734426.6 N	Dates 30)/04/2019	Project Contractor Ground Investigations Ireland		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kater Kater
0.50 0.50	B EN				(1.60)	MADE GROUND: Grey brown slightly sandy very CLAY with some redbrick fragments	gravelly	
1.70 1.70	B EN			2.65	- 1.60 - (0.50)	MADE GROUND: Brown slightly sandy slightly gra CLAY with some redbrick fragments	avelly	
2.50 2.50	B EN			2.15	(1.00)	Soft grey slightly gravelly SILT/CLAY with occasion fragments	nal shell	
3.50 3.50	B EN			1.15	3.10	Grey brown sandy very clayey angular to subroun to medium GRAVEL Obstruction due to cobble or boulder Complete at 3.70m	ded fine	
Remarks Concrete con Hand pit carr	ring carried out prior ried out to 0.50m BG	to hand pi	t		<u> </u>		Scale (approx)	Logged By
Window San Window San	nple terminated at 3. nple hole backfilled a	70m BGL Ind re-inst	due to obstruction of cobble or ated upon completion	boulder			1:25	DML
							Figure N 8507-02-	o. 19.WS107

	Grou	nd Inv	estigations Ir	reland	Ltd	Site Hickeys 43 Parkgate Place	Number WS108
Machine : T			www.gii.ie				
Method : [Drive-in Windowless	Dimensio	ns	Ground	4.25	ARUP	Job Number 8507-02-19
		Location		Dates		Project Contractor	Sheet
		7136	46.4 E 734426.9 N	30)/03/2019	Ground Investigations Ireland	1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Kater Kater
0 12 0 70	P			4.13	(0.12) 0.12	CONCRETE 0.00-0.70m - Hand Pit	
0.12-0.70	D					MADE GROUND: Grey brown sandy clayey angular to subrounded fine to coarse Gravel with many redbrick and concrete fragments	
0.50	EN				(0.58)	0.70-1.00m - 100% Recovery	
0.30-2.00	D			3.55	0.70	MADE GROUND: Brown slightly sandy gravelly Clay with some charcoal and mortar fragments	
					- -		
1.50	EN				 (1.90)	1.00-2.00m - 80% Recovery	
2.00	EN						
				1.65		2.00-3.00m - 80% Recovery	
2.60-3.50	В			1.05	(0.40)	Soft to firm brown slightly sandy gravelly CLAY	······································
				1.25	3.00	Soft grov brown CLAV	×
					- (0.50)	Solt grey brown CLAT	× × ×
							×
3.50	EN			0.75	3.50	3.00-4.00m - 20% Recovery	
					- -	Complete at 3.58m	
Remarks Concrete Co	oring carrid out prior	o hand pit			<u> </u>	Scale (appro	e Logged x) By
Hand pit car Window Sar Window Sar Not possible	rried out to 0.70m BC mple terminated at 3. mple hole backfilled a to establish by CPS	E 50m BGL du and re-instate the location	e to obstruction of cobbled upon completion	e or boulder holes		1:25	DML
The coordin	ates have been dete	mined using	the location plan drawin d on levels taken outside	ng e and a meas	urement taker	to the top of finished floor level	e No.

GROUND INVESTIGATIONS IRELAND	Grou	nd Inv	estigations Ire	land	Ltd	Site		Number		
			www.gii.ie			Hickeys 43 Parkgate Place		WS109		
Machine : T Method : D S	EC OP 10 rive-in Windowless ampler	Dimensio	ns	Ground	Level (mOD) 4.25	Client ARUP		Job Number 8507-02-19		
		Location		Dates	04/0040	Project Contractor		Sheet		
		7136	660.2 E 734427.8 N	UE	6/04/2019	Ground Investigations Ireland		1/1		
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kater Kater		
0.08-1.00	В			4.17	- (<u>6,08</u>) 	CONCRETE MADE GROUND: Brown slightly sandy slightly gra Clay with some redbrick mortar charcoal and cera fragments 0.08-1.00m - 100% Recovery	avelly mic			
0.90 1.00-2.00	EN B									
1.90 2.00-3.00	EN B				(3.92)	1.00-2.00m - 80% Recovery				
2.90 3.00-3.90	EN B					2.00-3.00m - 50% Recovery				
3.90	EN					3.00-4.00m - 10% Recovery				
				0.25	4.00	Complete at 4.00m		~~~~~~~		
Remarks Concrete Co Hand pit carr Window sam	ring carried out prior ried out to 0.50m BG aple terminated at rec	to hand pit L quired depti	ı	1	,		Scale (approx)	Logged By		
Window San	nple hole backfilled a to establish by GPS	the location	ted upon completion ns of internal exploratory hole a the location plan drawing	es			1:25	NM		
The elevatio	Vot possible to establish by GPS the locations of internal exploratory holes The coordinates have been determined using the location plan drawing The elevation is estimated at 4.25 mOD based on levels taken outside and a measurement taken to the top of finished floor level 8507-02-19									

	Grou	nd Inv	vestigations Ire	land	Ltd	Site Hickeys 43 Parkgate Place	Number WS110
Machine : T	EC OP 10	Dimensi	ons	Ground	Level (mOD)	Client	Job Number
	Sampler				1.20		8507-02-19
		Location	ı	Dates	\$/04/2010	Project Contractor	Sheet
		713	682 E 734415.7 N			Ground Investigations Ireland	1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend S
0.00-1.00	В			4.17	(0.92)	CONCRETE MADE GROUND: Dark brown mottled orange slightly sandy very clayey fine to medium Gravel with redbrick and mortar fragments 0.00-1.00m - 22% Recovery	/
0.90 1.00-2.00	EN B			3.25	1.00	MADE GROUND: Brown slightly sandy gravelly Clay with occasional redbrick mortar shell and bone fragments	
4.00					- - - - - - -	1.00-2.00m - 70% Recovery	
2.00-3.00	B				(2.30)	2.00-3.00m - 100% Recovery	
2.90 3.00-4.00	EN B			0.05			
3.50	EN			0.95	- 3.30 - (0.50)	Soft to firm dark grey CLAY with occasional shell fragments 3.00-4.00m - 80% Recovery	
				0.45	- 3.80 - (0.20) - 4.00	Dark grey slightly sandy very clayey fine to coarse sub-angular to sub-rounded GRAVEL Complete at 4.00m	
Remarks Concrete co Hand pit car Window Sar Window Sar	ring carried out prior ried out to 0.50m BG mple terminated at mple hole backfilled a	to hand pirit L quired dep and re-insta	t th ated upon completion one of internal exploratory bal			Scale (approx 1:25) By NM
The coordin The elevatio	ates have been deter on is estimated at 4.2	mined using 5 mOD bas	ng the location plan drawing sed on levels taken outside ar	nd a meas	urement taker	n to the top of finished floor level 8507-0	No.)2-19.WS110

	Grou	nd In	vestigations Ire	land	Ltd	Site Hickeys 43 Parkgate Place		Number WS111	
			www.yii.ie						
Machine : The Method : Di	EC OP 10 rive-in Windowless ampler	Dimensi	ons	Ground	Level (mOD) 4.25	Client ARUP		Job Number 8507-02-19	
		Location	1	Dates		Project Contractor		Sheet	
		713	3700.3 E 734398.1 N	06	/04/2019	Ground Investigations Ireland		1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend S	
				4.14	(0.11) 0.11 (0.44)	CONCRETE MADE GROUND: Grey brown mottled yellow slightly so clayey fine to coarse angular to sub-rounded Gravel wi some yellow brick fragments Handpit to 0.55m	sandy		
0.50	EN			3.70		Complete at 0.55m			
Remarks Concrete car	rried out prior to han	d pit			<u> </u>	Si (ap	Scale oprox)	Logged By	
Window San Window San	nple terminated at 0. nple hole backfilled a	55m BGL	due to obstruction of old wall. ated upon completion			1	1:25	NM	
Not possible The coordina The elevation	Vindow Sample hole backfilled and re-instated upon completion Not possible to establish by GPS the locations of internal exploratory holes The coordinates have been determined using the location plan drawing The elevation is estimated at 4.25 mOD based on levels taken outside and a measurement taken to the top of finished floor level								

	Grou	nd Inv	estigations Ir	Ltd	Site	Number	
A			www.gii.ie			Hickeys 43 Parkgate Place	WS112
Machine : T	EC OP 10	Dimensio	ons	Ground	Level (mOD) Client	Job
Method : D S	rive-in Windowless ampler				4.25	ARUP	Number 8507-02-19
		Location	I	Dates	04/2010	Project Contractor	Sheet
		713	679.8 E 734387.6 N	00	0/04/2019	Ground Investigations Ireland	1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness) Description	Legend Safe
0.00-1.00	в			4 15	- (0.10)	CONCRETE	·····
						MADE GROUND: Light brown slightly sandy clayey fine to coarse angular to sub-angular Gravel with redbrick and	
					(0.50)	mortar fragments	
					-		
				3.65	0.60	0.00-1.00m - 50% Recovery MADE GROUND: Brown mottled dark brown slightly sandy	
0.70	EN				-	very gravelly Clay with many charcoal mortar and redbrick and some slag fragments	
					-		
1.00-2.00	В				-		
					-		
					-		
					-	1.00-2.00m - 65% Revovery	
1.70	EN				(2.20)		
					-		
2 00 2 80					-		
2.00-2.80	В				- -		
					_		
					-		
					-	2.00-3.00m - 50% Recovery	
2.70							
2.70				1.45	2.80	Complete et 2 90m	
					-	Complete at 2.00m	
					-		
					- -		
					-		
					-		
					-		
					-		
					-		
					-		
					-		
					- 		
					-		
					-		
					 -		
					-		
.					<u> </u>		
Remarks Concrete co Hand pit car	ring carried out prior	to hand pit	:			Scale (approx)	Logged By
Window Sar Window Sar	nple terminated at 2. nple hole backfilled a	- 80m BGL d and re-insta	lue to obsruction of cobble ated upon completion	or boulder		1:25	NM
Not possible The coordinate	to establish by GPS ates have been deter	the locatio	ns of internal exploratory hing the location plan drawing	oles		Figure	No.
The elevatio	n is estimated at 4.2	5 mOD bas	ed on levels taken outside	and a meas	urement take	en to the top of finished floor level 8507-02	2-19.WS112

	Grou	nd In	vestigations Ire	l td	Site	Number	
A	Grou		www.gii.ie			Hickeys 43 Parkgate Place	WS113
Machine : T	EC OP 10	Dimens	ions	Ground	Level (mOD)	Client	Job
Method : D Si	rive-in Windowless ampler				4.25	ARUP	Number 8507-02-19
		Locatio	n	Dates	000/0040	Project Contractor	Sheet
		713	3646.4 E 734378 N	30	//03/2019	Ground Investigations Ireland	1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Kater Xater
0.00-0.70	В				(1.10)	CONCRETE 0.00-1.00m - 100% Recovery	
1.10-2.50 1.20	B EN			3.15	(0.30)	MADE GROUND: Brown grey slightly clayey angular to subangular fine to coarse Gravel with redbrick and morta fragments	r
				2.85	- 1.40 	MADE GROUND: Dark brown black slightly sandy Silt 1.00-2.00m - 100% Recovery	
1.70	EN			2 35	- 1.00		
				2.55	(0.60)	MADE GROUND: Brown slightly sandy slightly gravelly Silt/Clay with some mortar, charcoal and redbrick fragment	nts
2.30	EN			1 75	2 50		
2.50-3.00 2.60	BEN				(0.50)	Soft brown SILT/CLAY 2.00-3.00m - 100% Recovery	× × ×
				1.25	3.00 	Complete at 3.00m	×
Remarks Concrete Co Hand pit carn Window San Window San	ring carried out prior ried out to 0.50m BG nple terminated at 3.1 nple hole backfilled a to establish by GPS	to hand p L Dm BGL d nd re-inst the locati	it ue to obstruction of cobble or t ated upon completion ons of internal exploratory hole	poulder s		Sca (appr 1:2!	le Logged By 5 DML
The elevatio	ales nave been deter n is estimated at 4.2	mined usi 5 mOD ba	sed on levels taken outside an	id a meas	urement taker	n to the top of finished floor level	re NO.

GROUND INVESTICATIONS IRELAND	Grou	nd Inve	estigations Ire www.gii.ie	eland	Ltd	Site Hickeys 43 Parkgate Place	Number WS114
Machine : T Method : D S	EC OP 10 Drive-in Windowless Sampler	Dimension	s	Ground	Level (mOD) 4.25	Client ARUP	Job Number 8507-02-19
		Location 71362	9.3 E 734393.5 N	Dates 30	/03/2019	Project Contractor Ground Investigations Ireland	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Kater Vater
0.00-0.70	В			4.16	- (0.09) - 0.09 	CONCRETE MADE GROUND: Grey slightly sandy clayey angular to rounded fine to coarse Gravel with some concrete fragments	
0.50	EN			0.05		0.70-1.00m - 100% Recovery	
0.70-2.50	В			3.55	- 0.60 - (0.10) - 0.70 	CONCRETE MADE GROUND: Light brown gravelly Clay with some charcoal wood and red brick fragments	
1.50	EN			2.95	- 1.30 - 1.30 	MADE GROUND: Dark brown slightly sandy very gravelly Clay with many yellow and red brick, charcoal and mortar fragments 1.00-2.00m - 90% Recovery	
2.50 2.50-3.00 2.60	EN B EN			1.65	2.60	2.00-3.00m - 100% Recovery Soft brown SILT/CLAY	×x ×x
				1.25		Complete at 3.00m	×x
Remarks Concrete co Hand pit car Window Sar 50mm slotte seal with ga Not possible The coordin The elevatio	ring carried out prior ried out to 0.50m BG mple terminated at 3. d standpipe installed s tap and flush cover e to establish by GPS ates have been deter on is estimated at 4.29	to hand pit Lo m BGL due from 3.00m the locations rmined using 5 mOD based	to obstruction of cobble or to 1.50m with pea gravel s of internal exploratory ho the location plan drawing d on levels taken outside a	boulder surround, pl les and a meas	ain pipe instal urement taker Produce	led from 1.50m to ground level with bentonite tic the top of finished floor level to the GEOtechnical DAtabase SYstem (GEODASY) © all r	Logged By DML No. 2-19.WS114 ights reserved

GROUND INVESTIGATIONS IRELAND	Grou	nd In	vestigations Ire www.gii.ie	Ltd	Site Hickeys 43 Parkgate Place	Number WS115	
Machine : T Method : D Si	EC OP 10 rive-in Windowless ampler	Dimensi	ons	Ground	Level (mOD) 4.25	Client ARUP	Job Number 8507-02-19
		Location 713	n 3664.8 E 734412.6 N	Dates 30)/03/2019	Project Contractor Ground Investigations Ireland	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Kater Kater
0.30-1.80 0.50	B EN			4.17 3.95	(0.08) (0.22) 0.30	CONCRETE MADE GROUND: Grey slightly sandy slightly clayey angular to subangular fine to coarse Gravel with redbrick and concrete fragments MADE GROUND: Brown slightly sandy very gravelly Clay with mortar and redbrick fragments 0.00-1.00m - 65% Recovery	
1.50	EN				(1.50)	1.00-2.00m - 70% Recovery	
1.80-3.30	В			2.45	- 1.80 - 1.80	MADE GROUND: Brown slightly sandy gravelly Clay with occasional charcoal and mortar fragments	
2.50	EN				(1.50)	2.00-3.00m - 80% Recovery 3.00-3.30m - 100% Recovery	
				0.95		Hydrocarbon Odour Obstruction due to Cobble Complete at 3.30m	
Remarks Concrete con Hand pit carr Window San Window San Not possible The coordina The elevatio	ring carried out prior ried out to 0.60m BG nple terminated at 3.3 nple hole backfilled a to establish by GPS ates have been deter n is estimated at 4.2	to hand pi L 30m BGL ind re-inst the locatio mined usi 5 mOD ba	t due to obstruction of cobble or ated upon completion ons of internal exploratory hole ng the location plan drawing sed on levels taken outside ar	r boulder es nd a meas	urement taker	to the top of finished floor level	 Logged By DML re No.

	Grou	nd Inv	estigations Irel	Site Hickeys 43 Parkgate Place	Number WS116					
Machine · TF	EC OP 10	Dimensio	ne	Ground Lovel (mOD)		Client	Joh			
Method : Drive-in Windowless Sampler		Dimensions		4.25		ARUP	Number 8507-02-19			
		Location		Dates		Project Contractor	Sheet			
		713677.2 E 734397.2 N		30/03/2019		Ground Investigations Ireland	1/1			
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend S			
				4.17		CONCRETE MADE GROUND: Grey slightly sandy slightly clayey angular to subangular fine to coarse Gravel with redbrick and concrete fragments Complete at 0.70m				
Remarks					- 	Scale	Logged			
Concrete coring carried out prior to hand pit Hand pit carried out to 0.70m BGL										
Window Sample terminated on encountering an underground chanmber Window Sample hole backfilled and re-instated upon completion Elevation is an Estimation based on levels taken outside and a measurement taken to the top of finished floor level										
The elevation is estimated at 4.25 mOD based on levels taken outside and a measurement taken to the top of finished floor level										
	Produced by the GEOtechnical DAtabase SYstem (GEODASY) © all right									

	Grou	nd Inve	estinations lu	Site	Number		
	Crou		www.gii.ie	Hickeys 43 Parkgate Place	WS117		
Machine : T	EC OP 10	Dimension	IS	Ground Level (mOD)		Client	Job
Method : Drive-in Windowless					4.25	ARUP	Number 8507-02-19
	-	Location		Dates		Project Contractor	Sheet
		713647.8 E 734417.6 N		30	/03/2019	Ground Investigations Ireland	1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Safe
0.04.0.70	D			4.21	0.04	CONCRETE	
0.04-0.70	B				-	MADE GROUND: Brown slightly sandy very gravelly Clay with some redbrick and mortar fragments	
					[[(0.66)		
0.50	EN				-	0.00-1.00m - 100% Recovery	
0.70-1.80	в			3.55	- 0.70	MADE GROUND: Brown slightly sandy slightly gravelly	
					-		
					-		
					(1.20)		
1.50	EN				 	1.00-2.00m - 100% Recovery	
					-		
1.80-2.90	в				 		
				2.35	1.90	MADE GROUND: Brown slightly sandy very gravelly Clay with mortar redbrick charcoal and slag fragments	
					-		
					-		
					(1.00)		
2 50	FN					2 00-3 00m - 80% Recovery	
2.00					E_ -		
					-		
2.90-4.00	в			1.35	2.90	Soft grey SILT/CLAY with occasional shell fragments	X
					-		× ×
					-		<u>×</u>
					- -		×
					(1.00)		××
3.50	EN				-	3.00-4.00m - 70% Recovery	××
					-		×
				0.35	3 90		×
4.00	EN			0.25	- (0.10) - 4.00	Grey slightly sandy very clayey fine to medium angular to $_{ }$ sub-rounded GRAVEL	
					 	Complete at 4.00m	
					-		
					 -		
					E-		
					<u> </u>		
					- -		
Remarks	ring carried out prior	to window or	amole	1		, Scale	Logged
Window san 50mm slotte	nple terminated at re-	quired depth from 4.00m	to 1.50m with pea grave	l surround n	ain pipe instal	(approx	, by
seal with gas Elevation is	s tap and flush cover an Estimation based	on levels tak	ken outside and a measu	irement taker	to the top of	finished floor level	DML
Not possible	e to establish by GPS ates have been dete	the locations	s of internal exploratory the location plan drawing	holes		Figure	No.

The coordinates have been determined using the location plan drawing The elevation is estimated at 4.25 mOD based on levels taken outside and a measurement taken to the top of finished floor level Produced by the GEOtechnical DAtabase SYstem (GEODASY) © all rights reserved

8507-02-19 Hickeys Warehouse – Window Sample Photographs

WS101

WS102A

WS103

WS105

APPENDIX 5 – Borehole Records

GROUND INVESTIGATIONS IRELAND		Grou	nd In	vesti ww	gations Ire	land	Ltd	Site Hickeys 43 Parkgate Place		в N В	oreh umb H1	ole er 01
Machine : D	ando 2000	, Beretta	Casing	Diamete	r	Ground	Level (mOI)) Client		J	ob	
T- Method : C	44 able Percu	ission,	20 10	0mm cas 0mm cas	ed to 7.10m ed to 12.60m		3.91	ARUP		N 85	umt 07-0)er 2-19
			Locatio 71	n 3615.9 E	734360.3 N	Dates 03 29	/04/2019- /04/2019	Project Contractor Ground Investigations Ireland		S	heet 1/2	: 2
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness) Description	Legend	Water	In	str
0.50	В					3.81 3.31	0.10 (0.50	Concrete. MADE GROUND: Brown slightly sandy slightly clayey fine to coarse angular to sub-angular Gravel with angular to sub-angular cobbles and				
0.50 1.00 1.20-1.65	EN B EN SPT(C)	N=8			5,4/3,1,2,2		(0.90	boulders. MADE GROUND: Black slightly sandy slightly clayey fine to coarse angular to sub-angular Gravel with angular to sub-angular cobbles and boulders and slag fragments				
2.00	B SPT(C)	N=3			1 0/1 0 1 1	2.41	1.50 (1.00	MADE GROUND: Brown slightly sandy silty Clay with occasional mortar charcoal and redbrick fragments				
2.00	EN EN				· · · · · · · · · · · · · · · · · · ·	1.41	2.50	Soft light brown sandy very silty CLAY				
3.00 3.00-3.45 3.00	B SPT(C) EN	N=27			2,5/7,7,6,7	0.91	(0.00 3.00 (0.40	Stiff light brown sandy very silty CLAY	× × ×			
4.00	B	N-6			Water strike(1) at 3.80m.	-0.09	(0.60	Medium dense brown sandy slightly clayey sub-angular to rounded fine to medium GRAVEL	2	V 1		
4.00	EN	N-0			1,2/1,1,1,0	-0.59	(0.50	fine to medium GRAVEL				
5.00 5.00-5.45 5.00	B SPT(C) EN	N=12			2,2/2,3,3,4	-1.09	(0.50 5.00 (0.50	rounded cobbles Medium dense brown sandy slightly clayey sub-angular to rounded fine to medium GRAVEL with sub-angular to rounded cobbles				
6.00	B	50/270			2 3/14 26 10	-1.59 -2.09	(0.50 6.00	Medium dense grey slightly clayey sandy fine to medium angular to sub-rounded GRAVEL.			6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
6.00	EN	30/270			25/50 SPT(C) 25*/75		(1.10	angular to sub-rounded GRAVEL.	<u>-</u>			
7.00-7.08 6.90 7.00	TCR 100	SCR 18	RQD 0	FI	В	-3.19	 7.10	WEATHERED ROCK: Recovered as angular cobbles of weak thinly laminated dark grey black	0.0			
7.70				NI			(1.50	fine grained calcareous MUDSTONE and weak thinly bedded grey fine to medium LIMESTONE Obstruction due to rock or boulder.				
8.60	95	21	11			-4.69	8.60	Strong dark gray fine grained LIMESTONE with				
8.80	100	50	13	15			(1.40	 Some bands of weak thinly laminated dark grey black fine grained calcareous mudstone and some calcite veining. Distinctly weathered. Non Intact. 8.60-9.70m. Two Fracture sets. F1: very close to closely spaced, 30-50 degrees, undulating smooth, tight to open, clay staining. F2: 				
9.70 10.00				NI				closely spaced, 50-70 degrees, undulating smooth, tight to open, clay smearing.				
Remarks Concrete con Hand Pit to 1 Groundwate	ring carried I.20m BGL r encounte	d out prior	to hand p 0 BGL	it n BCl					Scale (approx)	B	ogge y	€d
Cable Percu 50mm slotte and flush co	uue to rock ssion to 7. d standpipe ver	t or boulde 10m BGL e installed	and Rota from 6.50	ry Core fo Om to 5.00	bllow on to 12.60m BG 0m with pea gravel su	GL. Irround, pl	ain pipe inst	alled from 5.0m to ground level with bentonite seal	Figure N 8507-02	lo. -19.	BH1	01

GROUND INVESTIGATIONS IRELAND	(Groui	nd In	vesti wv	gations Ire	land	Ltc	l	Site Hickeys 43 Parkgate Place		B N B	orehole umber H101
Machine : D Tr Flush : W	ando 2000 44 /ater	, Beretta	Casing 20 10	Diamete 0mm cas 0mm cas	r ed to 7.10m ed to 12.60m	Ground	Leve 3.91	l (mOD)	Client ARUP		J N 85	ob umber 07-02-19
Method : C	able Percu otary Core	ssion,	Locatio 71	n 3615.9 E	734360.3 N	Dates 03 29	/04/2 /04/2	019- 019	Project Contractor Ground Investigations Ireland		S	heet 2/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	C (Thi	Depth (m) ckness)	Description	Legend	Water	Instr
10.65	100	34	0	9 NI	-	-6.09		10.00	Weak to medium strong dark grey thinly bedded fine grained LIMESTONE interbedded with weak thinly laminated grey black fine grained calcareou mudstone and rare calcite veining. Partially weathered. 10.00-10.65m. One Fracture set. F1: closely spaced. 50-70 degrees. undulating smooth.			
11.10	100	71	45	9		-7.19		11.10 (1.50) 12.60	Very strong to medium strong dark grey thinly bedded fine grained LIMESTONE with calcaerous mudstone bands and calcite veining. Partially weathered. 11.10-12.60m. Two Fracture sets. F1: close to medium spaced, 20-40 degrees, undulating smooth, tight to open, clay smearing. F2: close to medium spaced, 40-60 degrees, undulating smooth, tight to open, clay			
12.60									Complete at 12.60m			
Remarks										Scale (approx)	B	ogged Y
										1:50 Figure	No.	NM
										8507-0	2-19	BH101

GROUND INVESTIGATIONS IRELAND		Grou	nd In	vesti ww	gations Ire /w.gii.ie	land	Ltd		Site Hickeys 43 Parkgate Place		B N B	oreho umbei H10	r 1 2
Machine : D B	ando 2000 eretta T44	&	Casing	Diamete Omm to 6	r 6.40m	Ground	Leve 4.10	l (mOD)	Client ARUP		J N 85	ob umbei 07-02-	r .19
Method : C W	ith Rotary	Core	98	mm to 15	5.50M	Datas			Protect Oceanor			b 4	
			Locatio 71	п 3624.7 Е	734403.6 N	13 07	6/04/2 7/05/2	019- 019	Ground Investigations Ireland		3	1/2	
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	D (Thie	epth (m) ckness)	Description	Legend	Water	Insti	r
						4.05 3.80		0.05 (0.25) 0.30	TARMACADAM MADE GROUND: Grey brown slightly clayey sandy fine to coarse sub-angular to sub-rounded				
0.50 0.50	B EN					3 10		(0.70)	Gravel with cement fragments. MADE GROUND: Brown sandy very clayey fine to coarse angular to sub-rounded Gravel.				
1.00 1.00 1.20-1.65	B EN SPT(C)	N=11			10,5/2,2,4,3	3.10		(1.10)	MADE GROUND: Light brown mottled dark brown slightly sandy gravelly Clay with mortar and redbrick fragments				
2.00 2.00-2.45	B SPT(C)	N=4			1,1/1,1,1,1	2.00		2.10	Soft dark grev very sandy very gravelly very silty				
2.00								(0.90)	CLAY.				
3.00 3.00-3.45 3.00	B SPT(C) EN	N=11			2,3/3,3,2,3	1.10		3.00 (0.50)	Firm dark grey very sandy slightly gravelly very silty CLAY.	· · · · · · · · · · · · · · · · · · ·	- - - -		
4.00	B				1 2/2 2 2 2	0.60		3.50	Loose becoming medium dense brown very gravelly fine to coarse SAND with occasional sub-rounded cobbles	0,0,0 0,0,0 0,0,0	▼ 1		
4.00	EN	N-9			1,2/2,2,2,3			(1.75)		000 000 000			
5.00 5.00 5.00-5.45	EN B SPT(C)	N=12			Water strike(1) at 4.70m, rose to 4.00m in 20 mins. 1,2/2,3,3,4	-1 15		5 25		0,0 0,0 0,0 0,0			
5.30 6.40	В				EN			(0.75)	Medium dense brown slightly clayey sandy sub-angular to sub-rounded fine to medium GRAVEL with wood fragments		•		
6.00 6.00-6.28 6.00 6.40-6.40	B SPT(C) EN TCR	35/125	ROD	FI	25/50 7,7/10,25 SPT(C) 25*/0	-1.90		6.00 (0.40)	Firm dark grey sandy gravelly very silty CLAY	×			
6.40 6.80		John				-2.30		6.40 (0.40) 6.80	OVERBURDEN: Recovery consists of greyish brown slightly sandy gravelly CLAY with occasional cobble fragments of Limestone. Grave is fine to medium angular of Limestone. Drillers		4 • •		
	96	49	45	4					Notes: CLAY Obstruction due to rock at 6.40 BGL. Rotary Core follow on from 6.40m BGL Medium strong to strong fine grained thinly				
7.65				14					laminated grey/dark grey LIMESTONE. partially weathered with occasional calcite veining, oxide staining and brown Clay staining interbedded with a weak fine grained thinly laminated black				
8.20 8.55				5					calcite veining, Clay bands, pyritic laminae and oxide staining				
	100	43	21	13									
9.30													
9.70													
Concrete co Hand Pit to Obstruction	ring carried 1.20m BGL at 6.40m B	d out prior	to hand p rock.	it						Scale (approx)		ogged y	I
Rotary Core Chiselling fro	follow on f om 6.40m t	rom 6.40r o 6.40m f	on BGL n BGL or 1 hour.							Figure	NO.		ະ

GROUND INVESTIGATIONS IRELAND		Grou	nd In	vesti	gations Ire	land	Ltd	Site Hickeys 43 Parkgate Place		в N В	orehole umber H102
Machine : D B Flush : W	ando 2000 eretta T44 /ater	8	Casing 20 98	Diamete Omm to 6 mm to 15	r .40m .50m	Ground	Level (mOD) 4.10	Client ARUP		J N 850	ob umber 07-02-19
Core Dia: 68	8 mm		Locatio	n		Dates		Project Contractor		s	heet
Method : C w fo	able Percu ith Rotary ollow on	ission Core	71	3624.7 E	734403.6 N	13 07	3/04/2019- 7/05/2019	Ground Investigations Ireland			2/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
11.05 11.95 12.55 14.05 15.50	100 100 100 100	65 80 55 72 80	38 43 46 56 63	11		-11.40		Fracture set 1: Very closely to closely spaced, dipping 0 - 25 degrees, rough planar to smooth planar with some oxide staining Fracture set 2: Very closely to medium spaced, dipping 30 - 50 degrees, rough planar to smooth planar with some oxide staining Fracture set 3: Medium spaced, dipping 70 - 85 degrees, rough undulose to rough planar with occasional Clay staining Complete at 15.50m			
Remarks									Scale (approx) 1:50 Figure 1 8507-02	NI NI 2-19.	ogged y & EB BH102

		Grou	nd In	vesti ww	gations Ire	land	Ltd	Site Hickeys 43 Parkgate Place		в N В	orehole umber H103
Machine : D Tr	ando 2000 44 able Percu	, Beretta	Casing 20	Diamete Omm cas Omm cas	r ed to 5.70m ed to 15.10m	Ground	Level (mOD) 4.66	Client ARUP		Jo N 850	ob umber)7-02-19
R	otary Core		Locatio 71	n 3620.8 E	734427.3 N	Dates 14 08	/04/2019- 3/05/2019	Project Contractor Ground Investigations Ireland		SI	h eet 1/2
Depth (m)	Sample	e / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.50 0.50	B EN					4.36	(0.30) 0.30 (0.70)	TARMACADAM MADE GROUND: Brown slightly sandy very clayey fine to coarse angular to sub-rounded Gravel with concrete tarmacadam and redbrick.			
1.00 1.00 1.20-1.65	B EN SPT(C)	N=13			5,3/3,4,2,4	3.66	1.00	MADE GROUND: Brown gravelly very sandy very silty Clay with mortar and charcoal fragments.	· · · · · · · · · · · · · · · · · · ·		
2.00 2.00-2.45 2.00	B SPT(C) EN	N=7			1,1/2,2,1,2	2.26	2.40	Firm grey sandy very gravelly very silty CLAY.			
3.00 3.00-3.45 3.00	B SPT(C) EN	N=10			2,3/2,2,3,3		(1.20)				
						1.06	3.60 (0.30)	Loose grey slightly sandy very clayey fine to coarse sub-angular to sub-rounded GRAVEL			
4.00 4.00-4.45 4.00	B SPT(C) EN	N=7			1,1/1,2,2,2		(1.10)	Loose brown sandy GRAVEL			
5.00 5.00-5.41 5.00	B SPT(C) EN	47/260			4,2/1,3,18,25	-0.34	5.00	Very dense dark brown sandy silty GRAVEL with occasional sub-rounded cobbles			
5.70	В						(1.40)	Obstruction due to rock at 5.70m BGL.	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		
6.40	TCR 100	SCR 0	RQD 0	FI		-1.74	6.40	Diller notes: Clay with boulders. Recovery consist	s h		
6.70	85	47	17	14		-2.04	6.70	Calcite veining. Partially weathered. Medium strong to strong dark grey thinly bedded fine grained LIMESTONE with some bands of weak thinly laminated dark grey black fine grained calcareous mudstone and occasional calcite veining. Patially weathered 6.70-8.60m. Two Fracture sets. F1: very close to closely spaced, 0-20 degrees, undulating smooth, clay staining. F2: very close to			
8.20 8.60						-3.54	8.20	closely spaced, 600-70 degrees, undulating smooth, clay staining. Strong dark grey thinly bedded fine grained LIMESTONE with some bands of weak thinly laminated dark grey black fine grained calcareous mudstone and occasional calcite veining. Patially			
0.70	83	57	43				(3.05)	Non Intact.			
Bomorice				8			Ē., ,				
Concrete con Hand Pit to 1 Obstruction	ring carried 1.20m BGL at 5.70m B	d out prior GL due to	to hand p rock.	it					Scale (approx)	B	ogged y
No groundwa Cable percus 50mm slotte	ater encou ssion to 5. d standpip	ntered. 70m BGL a e installed	and Rotar from 4.50	y Core fo)m to 3.20	llow on to 15.10m BG 0m with pea gravel su	SL. Jrround. pl	ain pipe insta	Illed from 3.20m to ground level with bentonite	1:50 Figure !	10.	NM
seal and flus Chiselling fro	sh cover om 6.40m t	to 6.40m fe	or 1 hour.			. . , p.			8507-02	-19.	BH103

		Grou	nd In	vesti	gations Ire	land	Ltd		Site Hickeys 43 Parkgate Place		B N B	orehole umber H103
Machine : D	ando 2000	, Beretta	Casing	VV V Diamete	r	Ground	Level ((mOD)	Client		J	ob
Flush : W	/ater		20 10	0mm cas 0mm cas	ed to 5.70m ed to 15.10m		4.66		ARUP		85	07-02-19
Core Dia: H	Q mm	!	Locatio	'n		Dates	104/004	10	Project Contractor		s	heet
R	otary Core	ission,	71	3620.8 E	734427.3 N	08	3/05/201	19- 19	Ground Investigations Ireland			2/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	De (n (Thick	pth n) (ness)	Description	Legend	Water	Instr
	100	59	46			0.50		11.05	8.60-11.25m. Two Fracture sets. F1: very close to closely spaced, 30-45 degrees, undulating smooth, tight to open, clay smearing. F2: medium spaced, 50-70 degrees, undulating smooth, tight to open, clay smearing.			
11.25	100	71	48	10		-0.59		(1.50)	Medium strong to strong dark grey tinly bedded fine grained LIMESTONE with some bands of weak thinly laminated dark grey black fine grained calcareous mudstone and occasional calcite veining. Patially weathered 11.25-12.75m. One Fracture set. F1: close to medium spaced, 30-50 degrees, undulating smooth, tight to open, clay smearing.			
12.75	100	75	44	14		-8.09		12.75	Strong dark grey thinly bedded fine grained LIMESTONE with some bands of weak thinly laminated dark grey black fine grained calcareous mudstone and occasional calcite veining. Patially weathered 12.75-14.10m. One Fracture set. F1: very close to closely spaced, 30-50 degrees,			
13.85 14.10	100	88	74	5				(2.35)	undulating smooth, tight to open, člay smearing. 14.10-15.10m. One Fracture set. F1: close to widely spaced, 30-45 degrees, undulating smooth, tight to open, clay smearing.			
15.10						-10.44		15.10	Complete at 15.10m			
Remarks	1	<u> </u>	1	1	1	1			1	Scale (approx)	B	ogged y
										1:50		NM
										Figure I 8507-02	No. 2-19.	BH103

		Grou	nd In	vesti wv	gations Ire	land I	Ltd		Site Hickeys 43 Parkgate Place		B N B	orehole lumber 3H104
Machine : D	ando 2000 44), Beretta	Casing	Diamete	r 7.60m	Ground	Level (5.29	(mOD)	Client ARUP		J N 85	ob lumber 07-02-19
R	otary Core	ISSION,	Locatio	onin to 1 n 3691.5 E	734416.5 N	Dates 15 02	5/04/20 ²	19- 19	Project Contractor Ground Investigations Ireland		S	heet
Depth (m)	Sample	e / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	De (r (Thick	pth n) (ness)	Description	Legend	Water	Instr
								(3.00)	MADE GROUND: Greyish brown slightly sandy gravelly Clay with occasional subrounded cobbles and some ceramic, concrete and red brick fragments			
3.00 3.00-3.45 3.00 3.00	B SPT(C) J T	N=5			1,2/1,1,2,1	2.29		3.00	MADE GROUND: Dark grey very gravelly silty Sand			
4.00 4.00 4.00	B J T					1.29		4.00	MADE GROUND: Dark grey very gravelly slightly clayey Sand			
5.00 5.00-5.45 5.00 5.00	B SPT(C) J T	N=26			4,7/11,8,5,2	0.29		5.00	Stiff greyish brown sandy very gravelly very silty CLAY. Gravel is angular to subrounded		▼ 1	
6.00 6.00 6.00-6.45 6.00	J B SPT(C)	N=21			Water strike(1) at 5.80m, rose to 5.50m in 20 mins. 2,2/3,4,7,7	-0.91		6.20	Lense of soft grey mottled black gravelly CLAY with spongy Pseudofibrous Peat occurs between 5.80m to 6.20m BGL		1∑1	
7.00 7.00-7.45	B SPT(C)	N=33			4,6/7,7,9,10			(1.20)	sub-rounded cobbles. Sand is predominately coarse and Gravel is subangular to rounded			
7.00 7.50	T	SCR	RQD	FI	В	-2.11	Ē.	7.40	Brown subangular COBBLES and BOULDERS	0.00	5	
7.60	00	0		6		-2.31		7.60	(Presumed weathered rock)			
8.10				NI		-2.81		(0.50) 8.10	LIMESTONE with frequent calcite veining. Partially weathered. Two Fracture sets. F1: closely spaced, 10-30 degrees, undulating smooth, open, clay infill.			
8.50 9.60	100	60	44	4		-4.41		(1.60) 9.70	F2: closely spaced, 80-90 degrees, undulating smooth, tight to open, clay infill. Strong dark greythinly bedded fine grained LIMESTONE with frequent calcite veining and some bands of weak thinly laminated dark grey black fine grained calcareous mudstone. Partially weathered. Two Fracture sets. F1: closely spaced, 10-30 degrees, undulating smooth, tight to open, clay staining. F2: medium spaced, 40-50 degrees, undulating smooth, open, clay smearing.			
Remarks Borehle loca No groundwi Cable percu: Core loss oc 12.60m run. 50mm slotte seal and flus	ted in slit to ater encou ssion to 7.6 curred bet The core v d standpip sh cover	rench ntered. 60m BGL ween 13.1 vas lost w e installed	and Rotar I0m to 14 hen the ru from 12.3	ry Core fo .10m BGI un was re 30m to 8.1	bllow on to 15.60m BC L due to the inner bar turning to the surface 60m with pea gravel	GL. rel not lock surround, p	king in d	correctly	y with the outer barrel at the begining of the alled from 8.60m to ground level with bentonite	Scale (approx) 1:50 Figure N 8507-02	Ho . 2-19	ogged y NM .BH104

Chiselling from 7.50m to 7.50m for 1 hour.

Produced by the GEOtechnical DAtabase SYstem (GEODASY) © all rights reserved

		Grou	nd In	vesti	gations Ire	land I	Ltd	Site Hickeys 43 Parkgate Place		Bo Ni B	orehole umber H104
Machine : Da	ando 2000	. Beretta	Casing	VV VV Diamete	r.gii.ie	Ground	Level (mOD	Client			h
T4	44	,	20	0mm to 7	.60m	Ground	5.29	ARUP		NI 850	umber
Core Dia: m	nm		10	0mm to 1	5.60m					000	/-02-19
Method : C	able Percu otary Core	ission,	Locatio 71	n 3691.5 E	734416.5 N	Dates 15 02	/04/2019- /05/2019	Ground Investigations Ireland		Sr	2/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Legend	Water	Instr
10.32 11.10 12.60 13.10 14.10 15.60	93 80 47 100	30 61 27 75	10 39 21 56	27 8 7		-5.81 -7.81 -8.81		Medium strong to weak dark grey fine grained calcareous MUDSTONE and interbedded limestone with a pyrite lamination and very rare calcite grains. Partially weathered. Two Fracture sets. F1: closely spaced, 0-20 degrees, undulating smooth, tight to open, clay staining. F2: very closely spaced, 40-50 degrees, undulating smooth, tight to open, clay smearing Very strong dark grey thinly bedded fine grained LIMESTONE with a band of weak thinly laminated dark grey black fine grained calcareous mudstone and rare calcite veining. Partially weathered. Two Fracture sets. F1: closely spaced, 10-30 degrees, undulating smooth, tight to open, clay staining and sand infill. F2: closely spaced, 30-45 degrees, undulating smooth, open, clay staining. Core Loss Core Loss between 13.10-14.10m BGL. - See Remarks Section. Very strong dark grey thinly bedded fine grained LIMESTONE with some bands of weak thinly laminated dark grey black fine grained calcareous mudstone and thick calcite veining. Partially weathered. Two Fracture sets. F1: medium spaced, 10-30 degrees, undulating smooth, tight to open, clay staining and smearing. Partially weathered. Two Fracture sets. F1: medium spaced, 10-30 degrees, undulating smooth, tight to open, clay staining and smearing. F2: closely spaced, 40-60 degrees, undulating smooth, tight to open, calcite infill and clay staining.			
Remarks									Scale (approx) 1:50 Figure N 8507-02	Lc B. No.	pgged y NM BH104

		Grou	nd In	vest	igations Ire ww.gii.ie	land	Ltd	Site Hickeys 43 Parkgate Place		B N B	orehol umber 3H10	le ; 5
Machine : B Flush : V	Beretta T44 Vater		Casing 98	Diamete mm to 1	ə r 7.00m	Ground	4.25	Client ARUP		Jo N 85(ob lumber 07-02-1	19
Core Dia: 6 Method : F	8 mm Rotary Core	d	Locatio 71	n 3695.1 E	E 734406.3 N	Dates 1 12	1/05/2019- 2/05/2019	Project Contractor Ground Investigations Ireland		SI	heet 1/2	
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr	r
	0							CONCRETE				
1.30	10					2.95	1.30	OVERBURDEN: Poor recovery - recovery consists of brown slightly sandy slightly gravelly SILT. Gravel is fine subrounded and sand is predominately fine. Drillers notes: Sandy SILT (Soft)				
2.00 2.00-2.45 2.00	6				1,1/1,2,1,1 SPT(C) N=5 T				កម្មធម្មនេះ មួយសម័នទូកម្មសម្តេក ស្ត្រស្ត្រស្ត្រស្ត្រស្ត្រ ទំនាំ ស្ត្រស្ត្រ ស្ត្រស្ត្រស្ត្រស្ត្រស្ត្រ ស្ត្រស្ត្រ			
3.50 3.50-3.95 3.50	21				1,2/1,1,2,3 SPT(C) N=7 T		(5.20)		ા સામે છે. આ ગામ આ ગા આ ગામ આ ગ આ ગામ આ ગ આ ગામ આ ગ આ ગામ આ ગ આ ગામ આ ગામ આ આ ગામ આ ગામ આ આ ગામ આ			
5.00 5.00-5.45 5.00	18				2,3/3,1,2,3 SPT(C) N=9 T				સ્ટામ્પુલ, ઉત્તર પ્રક્રમ, સ્ટ્રાસ્, સ્ટાર, આવ્યું સ્ટાર, સ સ્ટાર, સ્ટાર, સ			
6.50 6.50-6.95	29				3,2/2,1,3,2 SPT(C) N=8	-2.25	6.50 (1.50)	OVERBURDEN: Poor recovery - recovery consists of grey sandy fine to coarse angular to subrounded GRAVEL of variable lithology. Drillers notes: Sand - Gravel (Loose)				
8.00 8.00-8.45					5,6/6,8,7,11 SPT(C) N=32	-3.75	8.00	OVERBURDEN: Poor recovery - recovery consists of grey clayey sandy fine to coarse subrounded GRAVEL of Limestone. Drillers notes Gravel (Dense)				
8.50 9.50	81	12	12	-		-4.25	8.50 	Weak fine grained thinly laminated grey LIMESTONE. Distinctly weathered with pyritic concretions, some calcite veining and residually weathered Mudstone bands				Allanda ann an a
Remarks Concrete co Bentonite se plain standp	pring carried eal from 17. pipe was ins	d out prior 00m BGL	to drilling to 13.00n m 11.50m	NI n BGL, S BGL to (Blotted standpipe insta	lled from the first state of the	13.00m BGL to lush cover	0 11.50m BGL with a pea gravel surround and a	Scale (approx)	L	ogged	
Not possible The coordin The elevatio	e to establis ates have b on is estima	sh by GPS been dete ited at 4.2	5 the locati rmined us 5 mOD ba	ions of ir ing the le ased on l	Iternal exploratory hole ocation plan drawing evels taken outside an	es nd a meas	surement taker	n to the top of finished floor level	1:50 Figure N 8507-02	lo. -19.	EB .BH105	5

		Grou	nd In	vesti wv	gations Ire	land	Ltd	Site Hickeys 43 Parkgate Place		в N В	orehole umber 3H105
Machine : E Flush : V	Beretta T44 Vater		Casing 98	Diamete mm to 17	r ′.00m	Ground	Level (mOD) 4.25	Client ARUP		J N 85	ob Jumber 07-02-19
Method : F	Rotary Core	d	Locatio 71	o n 3695.1 E	734406.3 N	Dates 11 12	/05/2019- 2/05/2019	Project Contractor Ground Investigations Ireland		S	heet 2/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
	79	0	0			-6.05	10.30	Black residual MUDSTONE with Limestone lithic fragments			
11.00				-							
11.40	100	32	23			-7.15	11.40	Medium strong to strong fine grained thinly laminated grey LIMESTONE. Partially weathered with some residual Mudstone bands, pyritic laminae, pink and white calcite veining			
12.50	94	48	48	13		-8.75		Medium strong fine grained thinly laminated grey/dark grey LIMESTONE. Partially weathered with some pink and white calcite veining interbedded with a weak fine grained thinly laminated black MUDSTONE. Distinctly weathere to residual with pink calcite veining, pyrite specks throughout and occasional residual bands		-	
14.00	100	52	36	-				14.70m to 14.95m BGL Residual Mudstone band Fracture set 1: Closely to medium spaced, dipping 0 - 25 degrees, rough planar to rough undulose with occasional Clay staining		-	
15.50 16.00	100	65	38	11				Fracture set 2: Very closely to closely spaced, dipping 30 - 50 degrees, rough planar with occasional Clay staining Fracture set 3: Closely to medium spaced, 70 - 85 degrees, rough planar to rough undulose		-	
17.00						-12.75		Complete at 17.00m			
Remarks	1								Scale (approx)	B	ogged y
									1:50		EB
									Figure N 8507-02	\o. 2-19	.BH105

Interchane Casing Deservet Consult Level (mOD) Clearly Although (MD) Clearly Authour (MD) Poject Contractor Band Copy Into Tork SCR ROD P Failed Records Into Poject Contractor Sound Investigations Instands		(Grou	nd In	vest	igations Ire vw.gii.ie	land	Ltd	Site Hickeys 43 Parkgate Place		Boi Nui BH	rehole mber 1106
Conde Data Instruction 1/2 million (based to 1/2 million) Consister 1713562 & E 734322 N Dates 1/2 Conde Condensator Property Condensator (Condensator Condensator (C	Machine : E Flush : V	Beretta T44 Water		Casing 10	Diamete 2mm cas	er sed to 12.70m	Ground	Level (mOD) 4.25	Client ARUP		Job Nui 8507	b mber 7-02-19
Opph TCR SCR RD0 P1 Pield Records Legen Lossible (Losbible (Lossible (Losbible (L	Method : F	Rotary Core	d	Locatio	n 3662.8 E	734382 N	Dates 13	3/04/2019	Project Contractor Ground Investigations Ireland		She	eet 1/2
0.00 0	Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
2.0 2.0 2.0 0 </td <td>0.00</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>4.15</td> <td>(2.10)</td> <td>CONCRETE Open hole techniques carried out - Driller notes Clay and Gravel</td> <td></td> <td></td> <td></td>	0.00	0	0	0			4.15	(2.10)	CONCRETE Open hole techniques carried out - Driller notes Clay and Gravel			
3.70 3.704.15 3.70 3.704.15 1.00.1.2.4 SPT(C) N=7 0.65 3.70 SPR hole techniques carried out. Sample recovery indicates brown sightly sandy sity CLAY 5.20 5.20-5.65 0	2.20 2.20-2.65	0	0	0		2,2/2,1,1,1 SPT(C) N=5	2.05	2.20	Open hole techniques carried out. Sample recovery indicates probable natural brown sandy gravelly CLAY (Soft)			
5.20 5.20-5.65 0	3.70 3.70-4.15	0	0	0		1,0/0,1,2,4 SPT(C) N=7	0.55 -0.45	(1.00) 4.70	Open hole techniques carried out. Sample recovery indicates brown slightly sandy silty CLA' (Soft to firm) Open hole techniques carried out. Sample recovery indicates Loose to medium dense brown sandy clayey fine to coarse sub-angular to			
6.70 6.70 1.0/0.1.0.2 SPT(C) N=3 -2.45 6.70 6.70 0.0/10.2 SPT(C) N=3 -2.45 6.70 6.70 0.0/10.2 SPT(C) N=3 -2.45 6.70 0.00 3 0 0 0 0 8.00 0 0 0 0 0 8.00 0 0 0 0 0 8.00 0 0 0 0 0 9.70 73 13 19 0 0 0 9.70 0 0 0 0 0 0 0 9.70 0 0 0 0 0 0 0 0 9.70 0 0 0 0 0 0 0 0 0 0 0 9.70 0 0 0 0 0 0 0 0 0 0 0 9.70 0 0 0 0 0 0 0 0 0 0 <td>5.20 5.20-5.65</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>2,9/5,4,3,2 SPT(C) N=14 Water strike(1) at</td> <td></td> <td></td> <td>SUD-FOUNDED GRAVEL</td> <td></td> <td></td> <td></td>	5.20 5.20-5.65	0	0	0		2,9/5,4,3,2 SPT(C) N=14 Water strike(1) at			SUD-FOUNDED GRAVEL			
8.00 -3.75 8.00 8.20 NI 8.40 97 73 13 97 73 13 19 9.70 -5.45 9.70 Store to closely spaced, 50-60 degrees, undulating smooth, tight to open with clay smearing and staining. -5.45 9.70 -5.45 9.70 Store to closely spaced, 50-60 degrees, undulating smooth, tight to open with clay smearing and staining. -5.45 9.70 -5.45 9.70 Store to closely spaced, 50-60 degrees, undulating smooth, tight to open with clay smearing and staining. -5.45 9.70 -5.45 9.70 Store dark grey fine grained LIMESTONE with occasional calcite veining. -5.45 Weak to medium strong dark grey fine grained LIMESTONE with occasional calcite veining. -5.45 NM -5.45 9.70 Store dark on completion. -5.45 9.70 NM -5.45 9.70	6.70 6.70-7.15	40	3	0		6.40m. 1,0/0,1,0,2 SPT(C) N=3	-2.45	6.70	Driller Notes: Grey sand and gravel. Recovery consists of grey slightly sandy slightly clayey fine to coarse sub-angular to sub-rounded GRAVEL (Loose) with occasional cobbles.SPT recovery consists of grey brown slightly sandy SILT (Soft). 6.70-8.00m 40% recovery			
97 73 13 19 (1.70) 8.40-9.70m - One fracture set. F1:Very close to closely spaced, 50-60 degrees, undulating smooth, tight to open with clay smearing and staining. 9.70	8.00 8.20 8.40				NI	-	-3.75	8.00	Weak to medium strong dark grey fine grained LIMESTONE with weak calcareous Mudstone bands some calcite veining. Distinctly weathered. 8.00-8.40m - Non Intact.			
9.70 -5.45 9.70 Strong dark grey fine grained LIMESTONE with occasional calcite veining. Remarks Concrete coring carried out prior to hand pit Hand pit carried out to 1.20m BGL Scale (approx) Groundwater encountered at 6.40m BGL. Borehole backfilled on completion. 1:50 NM Not possible to establish by GPS the locations of internal exploratory holes The result is the other to the dark interview of the dark interview of the dark interview of the d		97	73	13	19			(1.70)	8.40-9.70m - One fracture set. F1:Very close to closely spaced, 50-60 degrees, undulating smooth, tight to open with clay smearing and staining.			
Remarks Scale (approx) Logged By Concrete coring carried out prior to hand pit Hand pit carried out to 1.20m BGL Logged By Groundwater encountered at 6.40m BGL. 1:50 NM Borehole backfilled on completion. 1:50 NM Not possible to establish by GPS the locations of internal exploratory holes 1:50 NM	9.70						-5.45	9.70	Strong dark grey fine grained LIMESTONE with occasional calcite veining.			
I ne coordinates have been determined using the location plan drawing	Remarks Concrete co Hand pit ca Groundwate Borehole ba Not possible The coordin	oring carried rried out to er encounte ackfilled on e to establis nates have b	l out prior 1.20m BG red at 6.4 completio h by GPS peen dete	to hand p GL Om BGL. n. S the locati rmined us	it ons of in	ternal exploratory hol	les			Scale (approx) 1:50	Log By	gged NM

GROUND INVESTIGATIONS IRELAND		Grou	nd In	vesti	gations Ire	land	Ltc	I	Site Hickeys 43 Parkgate Place		B N B	orehole umber H106
Machine : B Flush : W	eretta T44 /ater		Casing 10	Diamete 2mm cas	r ed to 12.70m	Ground	Leve 4.25	l (mOD)	Client ARUP		J N 85'	ob umber 07-02-19
Core Dia: 10 Method : R	02 mm otary Core	d	Locatio	n 3662.8 E	734382 N	Dates 13	8/04/2	019	Project Contractor Ground Investigations Ireland		S	heet 2/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	C (Thi	Depth (m) ckness)	Description	Legend	Water	Instr
	100	90	60	11		0.05		(1.50)	9.70-11.20m - Two fracture sets. F1: Very close to medium spaced, 60 degrees, undulating smooth, tight to open with some clay smearing. F2: Medium to widely spaced, 70 degrees, undulating smooth, tight to open, with some clay staining.			
11.20	93	48	20	21		-6.95		(1.50)	Medium strong to strong dark grey fine grained LIMESTONE weak calcareous Mudstone bands and occasional calcite veining. 11.20-12.70m - Two fracture sets. F1: Very close to closely spaced, 30-40 degrees, undulating smooth, tight to open with some clay smearing. F2: Medium spaced, 70-80 degrees, undulating smooth, tight to open, with some clay staining.			
12.70						-8.45		12.70	Complete at 12.70m			
Remarks	1		1		1	1	r=		1	Scale (approx)	Ľ,	ogged Y
										1:50		NM
										Figure I 8507-02	vo. 2-19.	BH106

GROUND INVESTIGATIONS IRELAND		Grou	nd In	vest w	igations Ire vw.gii.ie	land	Ltd	Site Hickeys 43 Parkgate Place		в N В	orei umb H1	hole ber 07
Machine : B Flush : V	Machine : Beretta T44 Flush : Water Core Dia: 150 mm		Casing 10	Diamete 2mm cas	ed to 12.00m	Ground	Level (mOD) 4.25	Client ARUP		J N 85	ob umt 07-0	5er 12-19
Method : R	Rotary Core	d	Location Dates 713648.4 E 734399.5 N		tion Dates 06/04/2019- 713648.4 E 734399.5 N 07/04/2019 Ground Investigation		Project Contractor Ground Investigations Ireland		S	heet 1/:	t 2	
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	In	str
0.00	2	0	0		Water strike(1) at 1.20m.	4.15	0.10 (2.10)	CONCRETE Poor recovery. Driller notes: brown sandy clay 0.00-2.20m - 2% recovery.		Ψ1		
2.20 2.20-2.65	0	0	0		3,4/3,2,2,2 SPT(C) N=9	2.05	2.20	No recovery. Driller notes: brown sandy clay (firm) 2.20-3.70m - 0% recovery.				
3.70 3.70-4.15	0	0	0		1,1/1,1,1,1 Water strike(2) at 3.70m. SPT(C) N=4	0.55 -0.45	3.70 (1.00)	No recovery. Driller notes: sandy gravel (Loose) 3.70-5.20m - 0% recovery. No recovery. Driller notes: sandy gravel (Loose to medium dense)		₩2		
5.20 5.20-5.65	0	0	0		3,2/3,2,3,2 SPT(C) N=10			5.20-6.70m - 0% recovery.			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
6.70 6.70-7.15 7.50	46	43	33	3	3,4/4,3,4,5 SPT(C) N=16	-2.45	(0.80)	No recovery. Driller notes: sandy gravel (Medium dense) Strong dark grey fine grained LIMESTONE with calcite veining and occasional clay bands (8.00m BGL - 0.05m band). 7.50-8.20m - Two fracture sets. F1:Closely spaced, 40 degrees, undulating smooth, tight			To Solve Commence of the second se	2 officers of the set
8.20 8.50 9.00 9.20 9.70 9.80	93	50	20	NI 7 NI 5		-4.75 -4.95	(1.50)	to open with clay infill. F2: Closely spaced, 50 degrees, undulating smooth, tight to open with clay infill. 8.20-8.50m - Non Intact. 8.50-9.00m - Two fracture sets. F1: Very close to medium spaced, 30-40 degrees, undulating smooth, tight to open with some clay smearing. F2: Medium spaced, 50 degrees, undulating smooth, tight to open, with some clay smearing. Residual weathering with calcareous MUDSTONE 9.00-9.20m - Non Intact.			ະທີ່ດ້ວຍເຊິ່ງ ເບິ່ງ ຊຶ່ງ ເວັ້າເຊິ່ງ ເບິ່ງ ເຈົ້າເປັນ ເຮັ້າເປັນ ເຮັ້າເປັນ ເຮັ້າເປັນ ເຮັ້າເປັນ ເຮັ້າເປັນ ເຮັ້າເປັນ ເອັ້າເປັນ ເຮັ້າເປັນ ເ ເອັ້າເປັນ ເຮັ້າເປັນ ເ	දි ක්රීයාවේ සංචිකයේ ක්රීයාවේ සංචිකයේ සංච සංචිකයේ සංචිකයේ සංචිකයේ සංචිකයේ සංචිකයේ
Remarks Concrete co Hand pit car Groundwate 50mm slotte	ring carried ried out to er encounte	d out prior 1.20m BG red at 3.7 e installed	to hand p L 0m BGL a from 12 (iit Ind 1.20r 00m to 4	n BGL at the start of th 00m with pea gravels	ne followin	ng day. plain pipe inst	alled from 4.00m to around level with bentonite	Scale (approx)	B	ogg y NM	ed

 50mm slotted standpipe instance inclusive inclusine inclusine inclusine inclusive inclusive inclusive inclusive inc

GROUND INVESTIGATIONS IRELAND	Ground Investigations Ireland Ltd					Site Hickeys 43 Parkgate Place		в N B	orehole umber H107			
Machine : B Flush : W	eretta T44 Vater		Casing 10	Diamete 2mm cas	r ed to 12.00m	Ground	Level 4.25	(mOD)	Client ARUP		Ja N 850	ob umber 07-02-19
Core Dia: 1 Method : R	50 mm Rotary Core	d	Locatio	n 3648.4 E	734399.5 N	Dates 06 07	6/04/20 7/04/20)19-)19	Project Contractor Ground Investigations Ireland		Sheet 2/2	
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	D (Thic	epth (m) kness)	Description	Legend	Water	Instr
11.20	100	73	33	24		-5.55 -6.35		(0.80) 10.60 (1.40)	Strong dark grey fine grained LIMESTONE with calcite veining and occasional clay bands. 9.20-9.80 - Two fracture sets. F1: Very close to medium spaced, 30-40 degrees, undulating smooth, tight to open with some clay smearing. F2: Medium spaced, 50 degrees, undulating smooth, tight to open, with some clay smearing. Weak to medium strong dark grey fine grained LIMESTONE with some calcite veining. Distinctly weathered.			
12.00	100	75	31			-7.75		12.00	Medium strong to strong dark grey fine grained LIMESTONE with some calcite veining. Partially weathered. 9.80-12.00m - Two fracture sets. F1: Very close to medium spaced, 30-40 degrees, undulating smooth, tight to open with some clay staining. F2: Close to medium spaced, 60-80 degrees, undulating smooth, tight to open with some clay staining. Complete at 12.00m			
Remarks							Ē.			Scale (approx)	L	ogged Y
										1:50		NM
										Figure I 8507-02	10. 2-19.	BH107

Hickeys 43 Parkgate Place – Rotary Core Photographs

BH101

BH101

BH102

Job Ref:	8507-02-19
Date: Depth: From	8-12/05/19 1 930 to 11954
0 50 60	70 80 90 100
979	
A WAY	11.95M
	Job Ref: Date: Depth: From

BH102

A GROUND	Colour Chart #1	4	Grey Scale #14	
Client: AR		Job Ref:	8507-02-19	
Borehole ref:	Parkgate Place BH102	Date: Depth: From	8 -12/05/19	.60 m
cm 10 20	30 40 4	50 60	7° 80	
CAL AND				
And	14.05m			14-60
Descentia -		1	THE A MARKEN AND THE	

BH102

				States and States and	
		Colour Chart #	14	Grey Scale #14	
Client:	ARU	PREPER	Job Ref:	8507-02-19	
Site:	Hickeys 43	Parkgate Place	Date:	8-12/05/19	1
Borehole	ref: C	H102	Depth: From	(4.60 to (5.50 m	h
Box No:	4	of 4			
cm 10	20 3	0 40	50 60	70 80 90	100
14.60m	. all and a	the for		alles 1	15:59
	KAN				-9
			A CARLON CONTRACT	Manapara	7.
1		·	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		* .
	2				
Province					4 10 F *

BH103

		Çojour Chart I		Grey Scale #14	
Client: Site:	ARUP Hickeys 43 Packs	sate Place	Job Ref: Date:	8507-02-19 07/05/19	
Borehole Box No:	ref: BH	103 F 3	Depth: From	970 to 12.4	-0
cm 10	20 30	1)-finh	50		
-10m	S.C.	M.			
(-)	Jon A	76		W E	121
10 million	1000		MALANEAN		12.4

BH104

	GROUN	D D					
Client:	Hanna Al	RUP		Job Ref:	8507-0	02-19	
Site:	Hickeys L	+3 Parksute	e Place	Date:	10-11/	05119	1
Borehole	ref:	BHIDS	The second	Depth: From	0.00	o to 10.1	On
Box No:	1	of	4				
cm 10	20	30	40	50 60	70	80 90	10
cm 10	20	30	50	50 60 04	70		

BH105

	Contraction of the	/	-			A & S M M A	
-				Colour Chart #1			
	Client:	A	RUP		Job Ref:	8507-02-19	
	Site:	Hickeys L	+3 Parksat	e flice	Date:	10-11/05/19	131
	Borehole	ref:	BHIOS	Str. a	Depth: From	10.10 to 12	304
1	Box No:	2	of	4			
	cm 10	20	30	40	50 60	70 80	90 100
10	ION	4 2 3 4 2 3			11.000	TA KAT MALLING	C K. War
	to the	-1 -1			. Alende	and the second second	Level and
1	A CONTRACT	835. *					1
		To be	(Frank al		St. Contracting (2)		2 M
E	12:391			A ANA		atologies and	13.30%
1		- Care		V	11-20	BALL	
-	1. 2. 2.	The Artes	18. 18 M	A The second		The second second	in the second

		ur Chart #14	Grey Scale #14
Client:	ARUP	Job Ref:	8507-02-19
Site:	Hickeys 43 Parkgate Pl.	ce Date:	10-11/05/19
Borehole	ref: BH105	Depth: From	13.30 to 16.05 m
Box No:	3 of 4		
cm 10	20 30 40	50 60	70 80 90 100
Allen diaman		1400M.	And the second second
a States	A AND	THE	A Provense
	A SHOLE A SHORE AND A SHORE AN		
18 45 1			
	15 50m		16.05m
202	and the second		

		4	Grey Scale #14
Client:	ARUP	Job Ref:	8507-02-19
Site:	Hickeys 43 Parksate Place	Date:	10-11/05/19
Borehole	eref: BH105	Depth: From	16.05 to 17.00m
Box No:	4 of 4		CARRY CONTRACT
cm 10	30 30 40	50 60	70 80 90 100
10-05x			17.00н
5			- Andrew

BH105

APPENDIX 6 – Laboratory Test Records

LABORATORY REPORT

4043

Contract Number: PSL19/2698

Report Date: 20 May 2019

Client's Reference: 2413208

Client Name: Ground Investigations Ireland Ltd Catherinestown House Hazelhatch Road Newcastle Co Durham

For the attention of: Stephen Kealy

Contract Title:	Hickeys 43 Parkgate Place
Date Received: Date Commenced: Date Completed:	1/5/2019 1/5/2019 20/5/2019

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson (Director) A Watkins (Director) R Berriman (Quality Manager)

Ste

S Royle (Laboratory Manager) S Eyre (Senior Technician) L Knight (Senior Technician)

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
BH101		В	2.00		Brown slightly gravelly sandy very silty CLAY.
BH101		В	3.00		Brown very sandy very silty CLAY.
BH101		В	4.00		Brown very sandy GRAVEL.
BH101		В	5.00		Brown sandy GRAVEL.
BH101		В	7.00		Brown very sandy GRAVEL.
BH102		В	2.00		Brown very gravelly very sandy very silty CLAY.
BH102		В	3.00		Dark brown slightly gravelly very sandy very silty CLAY with some organic material.
BH102		В	4.00		Brown very sandy GRAVEL.
BH102		В	5.30		Brown very gravelly SAND.
BH102		В	6.00		Dark brown gravelly sandy very silty CLAY.
BH103		В	1.00		Brown very gravelly very sandy very silty CLAY.
BH103		В	3.00		Brown very gravelly sandy very silty CLAY.
BH103		В	4.00		Brown sandy GRAVEL.
BH103		В	5.00		Dark brown sandy silty GRAVEL with cobbles.

			Contract No:
		Hicklovs 13 Parkgata Placa	PSL19/2698
		mekieys 45 1 al kgate 1 lace	Client Ref:
4043	Professional Solis Laboratory		8507-02-19

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377 : PART 2 : 1990)

					Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	
Hole	Sample	Sample	Тор	Base	Content	Shrinkage	Density	Limit	Limit	Index	.425mm	Remarks
Number	Number	Туре	Depth	Depth	%	%	Mg/m ³	%	%	%	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
BH101		В	2.00		36							
BH101		В	3.00		28			38	22	16	100	Intermediate plasticity CI.
BH102		В	2.00		17							
BH102		В	3.00		44							
BH102		В	6.00		45			69	29	40	75	High plasticity CH.
BH103		В	1.00		14							
BH103		В	3.00		38			67	28	39	71	High plasticity CH.
BH103		В	4.00		3.0				NP			
BH103		В	5.00		10				NP			

SYMBOLS : NP : Non Plastic

* : Liquid Limit and Plastic Limit Wet Sieved.

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

4043

Client Ref:

8507-02-19

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

8507-02-19

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

8507-02-19

Professional Soils Laboratory

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Client Ref:

8507-02-19

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

8507-02-19

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Client Ref:

8507-02-19

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Client Ref:

8507-02-19

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Client Ref:

8507-02-19

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Client Ref:

8507-02-19

Certificate Number 19-08733

Client Professional Soils Laboratory Ltd 5/7 Hexthorpe Road Hexthorpe DN4 0AR

- Our Reference 19-08733
- Client Reference PSL19/2698
 - Order No (not supplied)
 - Contract Title Hickeys 43 Parkgate Place
 - Description 6 Soil samples.
 - Date Received 10-May-19
 - Date Started 10-May-19
- Date Completed 16-May-19

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

your

Adam Fenwick Contracts Manager

16-May-19

Summary of Chemical Analysis Soil Samples

Our Ref 19-08733 Client Ref PSL19/2698 Contract Title Hickeys 43 Parkgate Place

			Lab No	1499609	1499610	1499611	1499612	1499613	1499614
		Sa	ample ID	BH101	BH102	BH102	BH103	BH103	BH103
			Depth	3.00	2.00	6.00	1.00	3.00	5.00
		Other ID							
		ple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
		Sampl	ing Date	n/s	n/s	n/s	n/s	n/s	n/s
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Inorganics									
рН	DETSC 2008#					9.0	8.8		8.0
Organic matter	DETSC 2002#	0.1	%				0.5		
Chloride Aqueous Extract	DETSC 2055	1	mg/l	6.3	47	19	6.7	5.3	8.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	16	30	360	28	340	390

Inappropriate

Information in Support of the Analytical Results

Our Ref 19-08733 Client Ref PSL19/2698 Contract Hickeys 43 Parkgate Place

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1499609	BH101 3.00 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (365 days)	
1499610	BH102 2.00 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (365 days)	
1499611	BH102 6.00 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (365 days), pH + Conductivity (7 days)	
1499612	BH103 1.00 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (365 days), Organic Matter (Manual) (28 days), pH + Conductivity (7 days)	
1499613	BH103 3.00 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (365 days)	
1499614	BH103 5.00 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (365 days), pH + Conductivity (7 days)	

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

LABORATORY REPORT

4043

Contract Number: PSL19/2699

Report Date: 22 May 2019

Client's Reference: 19/02/8507

Client Name: Ground Investigations Ireland Ltd Catherinestown House Hazelhatch Road Newcastle Co Durham

For the attention of: Stephen Kealy

Contract Title:	Hickeys 43 Parkgale Place
Date Received:	1/5/2019
Date Commenced:	1/5/2019
Date Completed:	22/5/2019

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson (Director) A Watkins (Director) R Berriman (Quality Manager)

£K#

L Knight (Senior Technician) S Eyre (Senior Technician) S Royle (Laboratory Manager)

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
TP101		В	1.00		Brown sandy clayey GRAVEL.
TP101		В	2.00		Brown gravelly very sandy CLAY.
TP101		В	2.50		Brown gravelly slightly clayey very silty SAND.
TP101		В	3.50		Brown very sandy slightly clayey silty GRAVEL.
TP102		В	2.50		Brown slightly gravelly sandy CLAY.

			Contract No:
$(\diamond \langle)$		Hickory 13 Parkgata Placo	PSL19/2699
		inckeys 45 i arkgate i lace	Client Ref:
4043	Professional Soils Laboratory		8507-02-19

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377 : PART 2 : 1990)

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Moisture Content % Clause 3.2	Linear Shrinkage % Clause 6.5	Particle Density Mg/m ³ Clause 8.2	Liquid Limit % Clause 4.3/4	Plastic Limit % Clause 5.3	Plasticity Index % Clause 5.4	Passing .425mm %	Remarks
TP101		В	1.00		17							
TP101		B	2.00		28							
TP101		В	2.50		25				NP			
TP102		В	2.50		32			49	23	26	96	Intermediate plasticity CI.

SYMBOLS : NP : Non Plastic

* : Liquid Limit and Plastic Limit Wet Sieved.

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

8507-02-19

Professional Soils Laboratory

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Client Ref:

8507-02-19

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Client Ref:

8507-02-19

Certificate Number 19-08343

Client Professional Soils Laboratory Ltd 5/7 Hexthorpe Road Hexthorpe DN4 0AR

- Our Reference 19-08343
- Client Reference PSL19/2699
 - Order No (not supplied)
 - Contract Title Hickeys 43 Parkgate Place
 - Description 3 Soil samples.
 - Date Received 07-May-19
 - Date Started 07-May-19
- Date Completed 10-May-19

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

your

Adam Fenwick Contracts Manager

10-May-19

Summary of Chemical Analysis Soil Samples

Our Ref 19-08343 Client Ref PSL19/2699 Contract Title Hickeys 43 Parkgate Place

			Lab No	1497114	1497115	1497116
		Sa	ample ID	TP101	TP101	TP102
			Depth	2.00	2.50	2.50
			Other ID			
		Sam	ple Type	В	В	В
		Samp	ing Date	02/05/19	02/05/19	02/05/19
		Sampl	ing Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Inorganics						
рН	DETSC 2008#			8.5	8.3	8.1
Organic matter	DETSC 2002#	0.1	%			1.6
Chloride Aqueous Extract	DETSC 2055	1	mg/l	77	15	55
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	29	23	22

Г

..

Information in Support of the Analytical Results

Our Ref 19-08343 Client Ref PSL19/2699 Contract Hickeys 43 Parkgate Place

Containers Received & Deviating Samples

		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1497114	TP101 2.00 SOIL	02/05/19	PT 500ml		
1497115	TP101 2.50 SOIL	02/05/19	PT 500ml		
1497116	TP102 2.50 SOIL	02/05/19	PT 500ml		
Kev: P-Plast	tic T-Tub				

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

LABORATORY REPORT

4043

Contract Number: PSL19/2860

Report Date: 24 May 2019

Client's Reference: 19/02/8507

Client Name: Ground Investigations Ireland Ltd Catherinestown House Hazelhatch Road Newcastle Co Durham

For the attention of: Stephen Kealy

Contract Title:	Hickeys 43 Parkgate Place
Date Received: Date Commenced: Date Completed:	9/5/2019 9/5/2019 24/5/2019
_	

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson (Director) A Watkins (Director) R Berriman (Quality Manager)

Ste

S Royle (Laboratory Manager) S Eyre (Senior Technician) L Knight (Senior Technician)

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
BH104		В	3.00		Dark grey very gravelly silty SAND.
BH104		В	4.00		Dark grey very gravelly slightly clayey SAND.
BH104		В	5.00		Grey very gravelly sandy very silty CLAY.
BH104		В	6.00		Grey gravelly sandy very silty CLAY.
BH104		В	7.00		Brownish grey very sandy GRAVEL with cobbles.

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377 : PART 2 : 1990)

Hole Number BH104	Sample Number	Sample Type B	Top Depth m 3.00	Base Depth m	Moisture Content % Clause 3.2	Linear Shrinkage % Clause 6.5	Particle Density Mg/m ³ Clause 8.2	Liquid Limit % Clause 4.3/4	Plastic Limit % Clause 5.3	Plasticity Index % Clause 5.4	Passing .425mm %	Remarks
BH104 BH104		B	1 00		17							
DII104		D	5.00		10							
BH104		В	5.00		19							
BH104		В	6.00		35			54	27	27	81	High plasticity CH.

SYMBOLS : NP : Non Plastic

* : Liquid Limit and Plastic Limit Wet Sieved.

BS1377 : Part 2 : 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

4043

Client Ref:

8507-02-19

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Geotechnical Laboratory, Civil, Structural & Environmental Engineering & Environmental Engineering Trinity College, Dublin.2.

Ground Investigations Ireland Ltd, Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin

+353 1 8961009 edunne@tcd.ie

Unconfined Compression Tests On Rock Cores

Project:	Hickeys, 43 Parkgate Place
Project No:	8507 - 02 - 19

Delivery Date: 14.05.2019

Test Date: 16.05.2019

Borehole Number	Depth (m)	Average Diameter (mm)	Height (mm)	Length/Dia. (Ratio)	Unconfined Compressive Strength (Mpa)	Density (Mg/m ³)
BH - 101	11.18 - 11.52	101.1	251.0	2.48	53.8	26.76
BH - 103	7.53 - 7.68	63.0	117.9	1.87	108.5	2.69
BH - 103	8.98 - 9.17	63.1	147.7	2.34	92.2	2.69
BH - 103	10.21 - 10.41	63.0	144.5	2.29	135.7	2.77
BH - 103	11.48 - 11.65	63.1	151.2	2.40	145.1	2.70
BH - 103	13.25 - 13.37	63.1	78.4	1.24	55.5	2.66
BH - 103	13.95 - 14.15	63.1	112.3	1.78	28.6	2.63
BH - 104	9.20 - 9.58	101.2	252.0	2.49	74.0	2.70
BH - 104	15.25 - 15.60	101.3	250.0	2.47	63.5	2.69

Prof. B. O'Kelly

Delivery Date:

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Geotechnical Laboratory, Civil, Structural & Environmental Engineering & Environmental Engineering Trinity College, Dublin.2.

Ground Investigations Ireland Ltd, Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin

+353 1 8961009 edunne@tcd.ie

Unconfined Compression Tests On Rock Cores

Project:	Hickeys, 43 Parkgate Place
Project No:	8507 - 02 - 19

23.05.2019

Test Date: 27.05.2019

Borehole Number	Depth (m)	Average Diameter (mm)	Height (mm)	Length/Dia. (Ratio)	Unconfined Compressive Strength (Mpa)	Density (Mg/m ³)
BH - 102	6.92 - 7.05	63.1	120.0	1.90	154.5	2.70
BH - 102	9.46 - 9.58	63.1	87.2	1.38	87.0	2.69
BH - 102	9.75 - 9.85	63.1	107.3	1.70	68.3	2.72
BH - 102	12.25 - 12.45	63.1	153.9	2.44	40.4	2.66
BH - 102	13.35 - 13.50	63.0	129.9	2.06	153.2	2.77
BH - 102	15.00 - 15.33	63.0	153.9	2.44	143.2	2.69
BH - 105	12.66 - 12.98	63.1	78.4	1.24	55.5	2.66
BH - 105	15.00 - 15.26	63.1	112.3	1.78	28.6	2.63
BH - 105	16.07 - 16.39	101.2	252.0	2.49	74.0	2.70

Prof. B. O'Kelly

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin Geotechnical Laboratory, Civil, Structural & Environmental Engineering & Environmental Engineering Trinity College, Dublin.2.

Ground Investigations Ireland Ltd, Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin

+353 1 8961009 edunne@tcd.ie

Unconfined Compression Tests On Rock Cores

Project:	Hickeys, 43 Parkgate Place

Project No: 8507 - 02 - 19

Delivery Date: 03.05.2019

Test Date: 10.05.2019

Borehole Number	Depth (m)	Average Diameter (mm)	Height (mm)	Length/Dia. (Ratio)	Unconfined Compressive Strength (Mpa)	Density (Mg/m ³)
BH - 106	9.53 - 9.70	101.3	144.8	1.43	94.5	2.67
BH - 106	10.30 - 10.60	101.3	247.0	2.44	67.9	2.71
BH - 107	7.50 - 7.90	101.2	136.6	1.35	120.4	2.67
BH - 107	9.30 - 9.50	101.2	146.2	1.45	62.9	2.76
BH - 107	11.30 - 11.50	101.3	189.0	1.87	68.3	2.71

Prof. B. O'Kelly

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Geotechnical Laboratory, Civil, Structural & Environmental Engineering & Environmental Engineering Trinity College, Dublin.2.

Ground Investigations Ireland Ltd, Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin

+353 1 8961009 edunne@tcd.ie

Point Load Index Tests (single diametral determination)

Project:	Hickeys, 43 Parkgate Place
Project No:	8507 - 02 - 19
Delivery date:	14.05.2019
Test Date:	17.05.2019

Diametric samples Borehole No.	Depth (m)	Is(50) (Mpa)
BH - 101	8.67 - 8.80	2.13
BH - 101	9.30 - 9.40	1.06
BH - 101	10.39 - 10.48	0.78
BH - 101	11.52 - 11.66	3.16
BH - 103	6.54 - 6.70	4.98
BH - 103	7.68 - 7.73	6.14
BH - 103	7.80 - 7.90	1.67
BH - 103	8.20 - 8.30	3.24
BH - 103	8.37 - 8.48	2.20
BH - 103	8.77 - 8.98	4.85
BH - 103	9.25 - 9.32	1.03
BH - 103	10.08 - 10.21	4.74
BH - 103	10.75 - 10.92	5.12
BH - 103	11.70 - 11.78	2.51
BH - 103	12.75 - 12.82	0.33
BH - 103	13.69 - 13.81	1.20
BH - 104	8.48 - 8.59	2.37
BH - 104	9.00 - 9.12	3.62
BH - 104	10.45 - 10.52	1.62
BH - 104	11.43 - 11.59	1.42
BH - 104	12.50 - 12.60	1.14
BH - 104	12.65 - 12.80	3.38
BH - 104	14.87 - 15.10	4.32

Prof. Brendan O'Kelly

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Geotechnical Laboratory, Civil, Structural & Environmental Engineering & Environmental Engineering Trinity College, Dublin.2.

Ground Investigations Ireland Ltd, Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin

+353 1 8961009 edunne@tcd.ie

Point Load Index Tests (single diametral determination)

Project:	Hickeys, 43 Parkgate Place
Project No:	8507 - 02 - 19
Delivery date:	23.05.2019
Test Date:	29.05.2019

Diametric samples Borehole No.	Depth (m)	Is(50) (Mpa)
BH - 102	6.80 - 6.92	5.04
BH - 102	7.30 - 7.35	5.17
BH - 102	8.02 - 8.20	3.37
BH - 102	8.30 - 8.38	3.90
BH - 102	9.39 - 9.46	3.82
BH - 102	10.00 - 10.13	3.67
BH - 102	11.25 - 11.38	4.21
BH - 102	11.72 - 11.95	4.22
BH - 102	12.45 - 12.53	2.39
BH - 102	12.73 - 12.80	0.58
BH - 102	13.95 - 14.05	2.43
BH - 102	14.90 - 15.00	2.96
BH - 105	11.83 - 11.94	3.81
BH - 105	13.10 - 13.24	3.30
BH - 105	14.05 - 14.13	5.66
BH - 105	14.23 - 14.50	5.02
BH - 105	15.93 - 16.05	3.66

Prof. Brendan O'Kelly

Specimens prepared and tested in accordance with suggested method from International Society for Rock Mechanics (ISRM), 1985

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Geotechnical Laboratory, Civil, Structural & Environmental Engineering & Environmental Engineering Trinity College, Dublin.2.

Ground Investigations Ireland Ltd, Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin

+353 1 8961009 edunne@tcd.ie

Point Load Index Tests (single diametral determination)

Project:	Hickeys, 43 Parkgate Place
Project No:	8507 - 02 - 19
Delivery date:	03.05.2019
Test Date:	10.05.2019

Diametric samples Borehole No.	Depth (m)	Is(50) (Mpa)
BH - 106	10.75 - 10.80	1.97
BH - 106	11.10 - 11.20	3.20
BH - 106	11.80 - 11.90	2.88
BH - 106	12.60 - 12.70	2.64
BH - 107	8.10 - 8.20	4.75
BH - 107	9.63 - 9.70	2.74
BH - 107	10.50 - 10.60	2.40
BH - 107	11.00 - 11.15	6.45

Prof. Brendan O'Kelly

Specimens prepared and tested in accordance with suggested method from International Society for Rock Mechanics (ISRM), 1985

Ground Investigations Ireland Catherinestown House

Hazelhatch Road

Newcastle Co. Dublin Ireland

Exova Jones Environmental

Registered Office: Exova Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN. Reg No. 11371415

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Stephen Kealy
Date :	16th April, 2019
Your reference :	8507-02-19
Our reference :	Test Report 19/5381 Batch 1
Location :	Hickeys 43 Parkgate Place
Date samples received :	2nd April, 2019
Status :	Final report
Issue :	1

Twenty nine samples were received for analysis on 2nd April, 2019 of which twenty nine were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Where Waste Acceptance Criteria Suite (EC Decision of 19 December 2002 (2003/33/EC)) has been requested, all analyses have been performed using the relevant EN methods where they exist.

Compiled By:

Phil Sommerton Project Manager

Client Name:									
Reference:									
Location:									
Contact:									
JE Job No.:									

Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/5381

Report : Solid

												-				
	J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30					
	Sample ID	BH101	BH101	WS104	WS104	WS104	WS106	WS106	WS106	WS106	WS108					
	Depth	0.50	1.00	0.50	1.50	2.50	0.50	1.00	2.20	2.80	0.50	Please se	Please see attached notes for a abbreviations and acronyms			
	COC No / misc											abbrevi				
	Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	1				
	Sample Date	30/03/2019	30/03/2019	31/03/2019	31/03/2019	31/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	31/03/2019	1				
	Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	1				
	Batch Number	1	1	1	1	1	1	1	1	1	1	┞────		,		
	Date of Poppint	02/04/2010			02/04/2010		02/04/2010	02/04/2010	02/04/2010	02/04/2010	02/04/2010	LOD/LOR	Units	Method No.		
Antimony	Date of Receipt	02/04/2013	02/04/2013	02/04/201 3 5	02/04/2015	02/04/2015	02/04/2015	02/04/2015	02/04/2015	02/04/2015	02/04/2015		ma/ka	TM30/PM15		
Anumony		⁴⁴ AA 24.1	-	20.3	4 22 7	21 1	ى 15.1	4 21.3	13.0	∠ 17.6		<1	mg/kg	TM30/PM15		
Arsenic Barium [#]		119	-	150	131	88	169	183	68	57		<0.5	mg/kg	TM30/PM15		
Cadmium [#]		0.8	-	0.4	0.5	1.9	0.9	0.9	0.7	0.6	-	<0.1	mg/kg	TM30/PM15		
Chromium [#]		47.9	-	62.2	57.5	71.2	51.4	45.8	70.5	51.7	-	<0.5	mg/kg	TM30/PM15		
Copper [#]		188	-	31	37	11	82	72	43	10	-	<1	mg/kg	TM30/PM15		
Lead [#]		301	-	197	211	31	366	414	58	28	-	<5	mg/kg	TM30/PM15		
Mercury#		<0.1	-	<0.1	0.2	<0.1	0.4	0.9	<0.1	<0.1	-	<0.1	mg/kg	TM30/PM15		
Molybdenum #		1.7	-	6.4	5.2	3.4	3.9	4.4	4.1	0.7	-	<0.1	mg/kg	TM30/PM15		
Nickel [#]		26.5	-	53.9	48.3	41.8	32.1	45.1	35.0	30.0		<0.7	mg/kg	TM30/PM15		
Selenium [#]		1	-	2	2	2	1	1	1	<1	-	<1	mg/kg	TM30/PM15		
Zinc [#]		136	-	102	98	136	198	251	76	140	- !	<5	mg/kg	TM30/PM15		
Antimony		-	17	-	-	-	-	-	-	-	2	<1	mg/kg	TM30/PM62		
Arsenic		-	43.1	-	-	-		-	-		14.2	<0.5	mg/kg	TM30/PM62		
Barium		-	514	-	-	-	-	-	-		160	<1	mg/kg	TM30/PM62		
Cadmium		-	0.2	-	-	-	-	-	-		0.9	<0.1	mg/kg	TM30/PM62		
Chromium		-	58.4	-	-	-	-	-	-	- 1	13.1	<0.5	mg/kg	TM30/PM62		
Copper		-	101	-	-	-	-	-	-	- 1	60	<1	mg/kg	TM30/PM62		
Lead		-	290	-	-	-	-	-	-	-	-0.1	<5	mg/kg			
Mercury			0.7 8.1	-		-		-	-		<0.1 2 0	<0.1	mg/kg	TM30/PM62		
Nickel			75.3	-							2.0	-0.7	mg/kg	TM30/PM62		
Selenium		-	2	-		-		-	-		1	<1	ma/ka	TM30/PM62		
Zinc		-	156	-	-	-	-	-	-	-	86	<5	mg/kg	TM30/PM62		
													<u> </u>			
											'					
							-			I	'					
											ļ!					
											'			-		
											!					
											!					
											!					
													 			

Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/5381

Report : Solid

J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30	1		
Sample ID	BH101	BH101	WS104	WS104	WS104	WS106	WS106	WS106	WS106	WS108			
Depth	0.50	1.00	0.50	1.50	2.50	0.50	1.00	2.20	2.80	0.50	Please sr	e attached r	otes for all
COC No / misc											abbrevi	cronyms	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	20/03/2019	20/03/2019	21/03/2019	21/03/2019	21/03/2019	20/03/2010	20/03/2010	20/03/2010	30/03/2010	21/03/2010	1		
Cample Tune	0.1	0.1	0.1	0.1	31/03/2013	0.1	0.1	0.1	0.1	0.1	1		
Sample Type	Soli	Soll	Soll	Soli	Soli	Soil	Soil	Soil	Soil	Soli	 		
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019			INU.
PAH MS													
Naphthalene [#]	0.08	<0.40 _{AB}	0.25	0.08	<0.04	5.30	0.31	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	0.13	<0.30 _{AB}	<0.03	<0.03	<0.03	2.28	0.20	<0.03	<0.03	<0.03	<0.03	mg/kg	
Acenaphtnene "	0.09	<0.30 AB	<0.05	<0.05	<0.05	7.40	0.40	<0.05	<0.05	<0.05	<0.05	mg/kg	
Phononthrene [#]	1.33	2.03AB	0.37	0.31	<0.03	42.47	3.21	<0.03	<0.03	0.16	<0.03	ma/ka	TM4/PM8
Anthracene #	0.44	<0.40	<0.04	<0.04	<0.04	8.10	0.64	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene [#]	1.77	1.90 _{AB}	0.13	0.10	<0.03	42.24	4.87	<0.03	<0.03	0.11	<0.03	mg/kg	TM4/PM8
Pyrene [#]	1.55	1.72 _{AB}	0.13	0.10	<0.03	36.57	4.42	<0.03	<0.03	0.08	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	0.84	1.48 _{AB}	0.15	0.13	<0.06	19.01	2.19	<0.06	<0.06	0.07	<0.06	mg/kg	TM4/PM8
Chrysene [#]	0.88	1.17 _{AB}	0.14	0.12	<0.02	20.94	2.98	<0.02	<0.02	0.06	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	1.54	1.84 _{AB}	0.21	0.18	<0.07	34.10	5.11	<0.07	<0.07	<0.07	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene *	0.86	0.72 _{AB}	0.08	0.09	<0.04	17.27	2.65	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	0.48	0.56 _{AB}	0.09	0.07	<0.04	11.58	1.60	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	0.23	<0.40 _{AB}	<0.04	<0.04	<0.04	4.81	0.64	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene *	0.57	0.63 _{AB}	0.11	0.09	<0.04	11.62	1.70	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
	0.11	<0.40 _{AB}	<0.04	<0.04	<0.04	2.33	0.29	<0.04	<0.04	<0.04	<0.04	mg/kg	
PAR 17 Total Benzo(b)fluoranthene	1 11	1 32 AB	0.15	0.13	<0.04	24.55	3 68	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.43	0.52AB	0.06	0.05	<0.02	9.55	1.43	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	95	96 _{AB}	96	95	96	106	97	92	92	97	<0	%	TM4/PM8
-													
Mineral Oil (C10-C40)	146	33	<30	<30	<30	<30	<30	<30	<30	<30	<30	mg/kg	TM5/PM8/PM16
TPH CWG													
Aliphatics													
>C5-C6 [#]	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8 [#]	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	0.1	0.4 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 *	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21 "	15	</th <th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM10</th></th></th></th></th></th></th></th></th></th>	</th <th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM10</th></th></th></th></th></th></th></th></th>	</th <th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM10</th></th></th></th></th></th></th></th>	</th <th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM10</th></th></th></th></th></th></th>	</th <th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM10</th></th></th></th></th></th>	</th <th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM10</th></th></th></th></th>	</th <th><!--</th--><th><!--</th--><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM10</th></th></th></th>	</th <th><!--</th--><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM10</th></th></th>	</th <th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM10</th></th>	</th <th>mg/kg</th> <th>TM5/PM8/PM10</th>	mg/kg	TM5/PM8/PM10
>C21-C35 Total alighatics C5-35	123	33	~19	~19	-19	~19	~19	~19	~19	~19	~19	mg/kg	TW5/TM38/PM8/PM12/PM16
	100	55	~10		~10	~10	~10	~10	~10	~10	~10	inging	
										ļ			
	1			1						1	1	1	

Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/5381

Report : Solid

J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30					
Sample ID	BH101	BH101	WS104	WS104	WS104	WS106	WS106	WS106	WS106	WS108					
Depth	0.50	1.00	0.50	1.50	2.50	0.50	1.00	2.20	2.80	0.50		Diagon and attached poten for all			
COC No / miss	0.00		0.00	1.00	2.00	0.00		2.20	2.00	0.00	Please see attached notes for a abbreviations and acronyms				
COC NO7 INISC															
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	30/03/2019	30/03/2019	31/03/2019	31/03/2019	31/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	31/03/2019					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1	1	1	1	1		Unito	Method		
Date of Receipt	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	LOD/LOR	Units	No.		
TPH CWG															
Aromatics															
>C5-EC7#	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1	mg/kg	TM36/PM12		
>EC7-EC8#	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1	mg/kg	TM36/PM12		
>EC8-EC10 [#]	<0.1	<0.1	<0.1 SV	<0.1 SV	<0.1	<0.1	<0.1 SV	<0.1 SV	<0.1	<0.1	<0.1	mg/kg	TM36/PM12		
>EC10-EC12*	<0.2	<0.2	<0.2	<0.2	<0.2	3.7	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16		
>EC12-EC16*	<4	9	<4	<4	<4	37	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16		
>EC16-EC21*	</th <th>27</th> <th><!--</th--><th><7</th><th><7</th><th>130</th><th>23</th><th><!--</th--><th><1</th><th><!--</th--><th><1</th><th>mg/kg</th><th>TM5/PW6/PW16</th></th></th></th>	27	</th <th><7</th> <th><7</th> <th>130</th> <th>23</th> <th><!--</th--><th><1</th><th><!--</th--><th><1</th><th>mg/kg</th><th>TM5/PW6/PW16</th></th></th>	<7	<7	130	23	</th <th><1</th> <th><!--</th--><th><1</th><th>mg/kg</th><th>TM5/PW6/PW16</th></th>	<1	</th <th><1</th> <th>mg/kg</th> <th>TM5/PW6/PW16</th>	<1	mg/kg	TM5/PW6/PW16		
>EU21-EU3D	86	151	<19	<19	<19	535	114	<19	<19	<19	<19	mg/kg	TM5/TM38/PM8/PM12/PM16		
Total aliphatics and aromatics(C5-35)	224	184	<38	<38	<38	535	137	<38	<38	<38	<38	mg/kg	TM5/TM38/PM8/PM12/PM16		
MTBE#	<5	sv	sv	sv	<5	<5	sv	sv	<5	<5	<5	ua/ka	TM31/PM12		
Benzene [#]	<5	<5 SV	<5 SV	<5 SV	<5	<5	<5 <5 ^{SV}	<5 SV	<5	<5	<5	ug/kg	TM31/PM12		
Toluene [#]	<5	<5 ^{sv}	<5 ^{sv}	<5 ^{sv}	<5	<5	<5 ^{sv}	<5 ^{sv}	<5	<5	<5	ug/kg	TM31/PM12		
Ethylbenzene [#]	<5	<5 ^{SV}	<5 ^{SV}	<5 ^{SV}	<5	<5	<5 ^{SV}	<5 ^{SV}	<5	<5	<5	ug/kg	TM31/PM12		
m/p-Xylene #	<5	<5 ^{\$V}	<5 ^{\$V}	<5 ^{\$V}	<5	<5	<5 ^{\$V}	<5 ^{\$V}	<5	<5	<5	ug/kg	TM31/PM12		
o-Xylene [#]	<5	<5 ^{\$V}	<5 ^{\$V}	<5 ^{\$V}	<5	10	<5 ^{SV}	<5 ^{SV}	<5	<5	<5	ug/kg	TM31/PM12		
PCB 28 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 52 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 101 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 118 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 138 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 153 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 180"	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
Total 7 PCBs	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TIMT7/PIN8		
Natural Moisture Content	14.8	22.0	18.6	15.4	34.1	19.4	27.8	25.1	31.5	17.4	<0.1	%	PM4/PM0		
% Dry Matter 105°C	89.5	83.1	81.6	82.4	75.0	81.4	68.3	78.1	79.3	84.3	<0.1	%	NONE/PM4		
Hovevelent Chromium #	-0.2	-0.2	-0.2	-0.2	-0.3	-0.3	-0.2	-0.2	-0.2	-0.2	-0.2	ma/ka	TM38/PM20		
Chromium III	47.9	-	62.2	57.5	71.2	51.4	45.8	70.5	51.7	-	<0.5	ma/ka	NONE/NONE		
Chromium III	-	58.4	-	-	-	-	-	-	-	13.1	<0.5	ma/ka	NONE/NONE		
												5 5			
Total Organic Carbon [#]	1.26	NDP	10.83	13.27	1.03	4.43	11.12	4.68	0.52	NDP	<0.02	%	TM21/PM24		
Loss on Ignition #	4.3	NDP	8.3	9.2	4.2	4.4	7.0	4.3	2.9	NDP	<1.0	%	TM22/PM0		
pH#	10.44	8.67	8.33	8.28	8.08	8.57	8.37	8.50	8.26	9.43	<0.01	pH units	TM73/PM11		
Mass of raw test portion	0.1011	0.1083	0.1102	0.1095	0.1202	0.1103	0.1316	0.1151	0.1138	0.1071		kg	NONE/PM17		
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17		

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/5381

Report : Solid

J	E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57	58-60			
	Sample ID	WS108	WS108	WS108	WS113	WS113	WS113	WS113	WS114	WS114	WS114			
	Depth	1.50	2.50	3.50	1.20	1.70	2.30	2.60	0.50	1.50	2.50	Please se	otes for all	
(COC No / misc											abbrevi	cronyms	
	Containers	VJT	VJT											
	Sample Date	31/03/2019	31/03/2019	31/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019			
	Sample Type	Soil	Soil											
	Batch Number	1	1	1	1	1	1	1	1	1	1			
D	ate of Receipt	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	LOD/LOR	Units	No.
Antimony		3	2	2	2	2	3	2	-	4	3	<1	ma/ka	TM30/PM15
A		15.0	10.5	10.2	11.0	7.2	12.0	10.2		12.0	14.0	-0.5	ma/ka	TM20/DM15
Arsenic #		13.2	10.5	19.2	11.0	7.5	13.9	19.2	-	13.0	14.0	<0.5	mg/kg	TM00/PM15
Barium "		104	88	111	85	64	87	107	-	121	93	<1	mg/kg	TM30/PM15
Cadmium #		2.2	1.7	1.8	0.5	0.3	2.4	1.8	-	0.6	1.7	<0.1	mg/kg	TM30/PM15
Chromium [#]		55.9	42.8	63.0	111.8	113.4	51.4	75.3	-	90.0	57.3	<0.5	mg/kg	TM30/PM15
Copper [#]		36	22	27	21	43	35	10	-	534 _{AA}	43	<1	mg/kg	TM30/PM15
Lead [#]		47	27	61	131	54	47	27	-	385	64	<5	mg/kg	TM30/PM15
Mercury [#]		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	0.2	<0.1	mg/kg	TM30/PM15
Molybdenum #		7.3	4.6	4.7	5.3	7.3	6.8	5.0	-	7.8	5.5	<0.1	mg/kg	TM30/PM15
Nickel [#]		47.9	35.2	43.5	28.3	21.1	48.1	37.8	-	47.8	44.8	<0.7	ma/ka	TM30/PM15
Selenium [#]		2	1	2	<1	<1	2	1	-	1	2	<1	ma/ka	TM30/PM15
Zine [#]		104	84	142	56	111	104	13/	_	153	103	~5	ma/ka	TM30/PM15
Antimony		104	04	142	50		104	134	11	100	105	-1	mg/kg	TM20/PM62
Anumony		-	-	-	-	-	-	-	11	-	-	<1	mg/kg	TM00/PM02
Arsenic		-	-	-	-	-	-	-	9.3	-	-	<0.5	mg/kg	T W30/PW62
Barium		-	-	-	-	-	-	-	186	-	-	<1	mg/kg	TM30/PM62
Cadmium		-	-	-	-	-	-	-	0.6	-	-	<0.1	mg/kg	TM30/PM62
Chromium		-	-	-	-	-	-	-	36.1	-	-	<0.5	mg/kg	TM30/PM62
Copper		-	-	-	-	-	-	-	25	-	-	<1	mg/kg	TM30/PM62
Lead		-	-	-	-	-	-	-	111	-	-	<5	mg/kg	TM30/PM62
Mercury		-	-	-	-	-	-	-	<0.1	-	-	<0.1	mg/kg	TM30/PM62
Molybdenum		-	-	-	-	-	-	-	1.2	-	-	<0.1	mg/kg	TM30/PM62
Nickel		-	-	-	-	-	-	-	36.3	-	-	<0.7	mg/kg	TM30/PM62
Selenium		-	-	-	-	-	-	-	<1	-	-	<1	mg/kg	TM30/PM62
Zinc		-	-	-	-	-	-	-	101	-	-	<5	mg/kg	TM30/PM62

Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/5381

Report : Solid

											6				
J E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57	58-60					
Sample ID	WS108	WS108	WS108	WS113	WS113	WS113	WS113	WS114	WS114	WS114					
Depth	1.50	2.50	3.50	1.20	1.70	2.30	2.60	0.50	1.50	2.50	Please see attached notes for all				
COC No / misc											abbreviations and acronyms				
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	31/03/2019	31/03/2019	31/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019					
Sample Type	01/00/2010	01/00/2010	01/00/2010	00/00/2010	00/00/2010	00/00/2010	00/00/2010	00/00/2010	00/00/2010	00/00/2010					
Sample Type	501	501	501	501	501	501	501	501	Soli	501					
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method		
Date of Receipt	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019			110.		
PAH MS															
Naphthalene #	<0.04	<0.04	<0.04	<0.04	0.24	<0.04	<0.04	0.05	0.07	<0.04	<0.04	mg/kg	TM4/PM8		
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.07	<0.03	<0.03	<0.03	mg/kg	TM4/PM8		
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.16	<0.05	<0.05	<0.05	mg/kg	TM4/PM8		
Fluorene *	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.19	<0.04	<0.04	<0.04	mg/kg	TM4/PM8		
Phenanthrene #	<0.03	<0.03	0.13	<0.03	0.38	0.25	<0.03	1.95	0.18	<0.03	<0.03	mg/kg	TM4/PM8		
Anthracene *	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.53	<0.04	<0.04	<0.04	mg/kg	TM4/PM8		
Fluoranthene *	<0.03	<0.03	<0.03	<0.03	0.06	<0.03	<0.03	2.79	0.07	<0.03	<0.03	mg/kg	TM4/PM8		
Pyrene *	<0.03	<0.03	<0.03	<0.03	0.04	<0.03	<0.03	1.97	0.09	<0.03	<0.03	mg/kg	TM4/PM8		
Benzo(a)anthracene "	<0.06	<0.06	<0.06	<0.06	0.08	<0.06	<0.06	1.33	0.14	<0.06	<0.06	mg/kg			
Chrysene "	<0.02	<0.02	0.06	<0.02	0.08	<0.02	<0.02	1.31	0.14	<0.02	<0.02	mg/kg			
Benzo(bk)fluorantnene	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	1.00	0.22	<0.07	<0.07	mg/kg			
Benzo(a)pyrene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.64	0.07	<0.04	<0.04	mg/kg			
Dibonzo(ab)anthracono#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.04	<0.09	<0.04	<0.04	mg/kg			
Bonzo(ahi)pon/ono [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.64	0.10	<0.04	<0.04	ma/ka	TM4/PM8		
Coronene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.09	<0.10	<0.04	<0.04	ma/ka	TM4/PM8		
PAH 17 Total	<0.64	<0.64	<0.64	<0.64	0.88	<0.64	<0.64	15.19	1.17	<0.64	<0.64	ma/ka	TM4/PM8		
Benzo(b)fluoranthene	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	1.58	0.16	<0.05	<0.05	ma/ka	TM4/PM8		
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.62	0.06	<0.02	<0.02	mg/kg	TM4/PM8		
PAH Surrogate % Recovery	96	87	91	94	95	97	96	93	94	104	<0	%	TM4/PM8		
Mineral Oil (C10-C40)	<30	<30	<30	<30	<30	<30	<30	283	<30	<30	<30	mg/kg	TM5/PM8/PM16		
TPH CWG															
Aliphatics															
>C5-C6 #	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1	mg/kg	TM36/PM12		
>C6-C8 [#]	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1	mg/kg	TM36/PM12		
>C8-C10	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1	mg/kg	TM36/PM12		
>C10-C12#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16		
>C12-C16 [#]	<4	<4	<4	<4	<4	<4	<4	5	<4	<4	<4	mg/kg	TM5/PM8/PM16		
>C16-C21 #	<7	<7	<7	<7	<7	<7	<7	36	<7	<7	<7	mg/kg	TM5/PM8/PM16		
>C21-C35#	<7	<7	<7	<7	<7	<7	<7	203	<7	<7	<7	mg/kg	TM5/PM8/PM16		
Total aliphatics C5-35	<19	<19	<19	<19	<19	<19	<19	244	<19	<19	<19	mg/kg	TM5/TM38/PM8/PM12/PM16		

Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/5381

Report : Solid

J E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57	58-60			
Sample ID	WS108	WS108	WS108	W\$113	WS113	WS113	W\$113	WS114	WS114	WS114			
Depth	1.50	2.50	3.50	1.20	1.70	2.30	2.60	0.50	1.50	2.50	Diagon on		atao for all
COC No / misc											abbrevi	ations and ac	cronyms
Containors	VIT	VIT	VIT	VIT	VIT	VIT	VIT	VIT	VIT	VIT			
Containers	VJI	VJI	VJI	VJI	VJI	VJI	VJI	VJI	VJI	VJI			
Sample Date	31/03/2019	31/03/2019	31/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1		Unite	Method
Date of Receipt	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	LOD/LOR	Units	No.
TPH CWG													
Aromatics													
>C5-EC7 #	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8 [#]	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 [#]	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12 [#]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35"	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td>68</td><td><!--</td--><td><!--</td--><td><!--</td--><td>mg/kg</td><td>TM5/PM8/PM16</td></td></td></td></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td>68</td><td><!--</td--><td><!--</td--><td><!--</td--><td>mg/kg</td><td>TM5/PM8/PM16</td></td></td></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td>68</td><td><!--</td--><td><!--</td--><td><!--</td--><td>mg/kg</td><td>TM5/PM8/PM16</td></td></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td>68</td><td><!--</td--><td><!--</td--><td><!--</td--><td>mg/kg</td><td>TM5/PM8/PM16</td></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td>68</td><td><!--</td--><td><!--</td--><td><!--</td--><td>mg/kg</td><td>TM5/PM8/PM16</td></td></td></td></td></td>	</td <td><!--</td--><td>68</td><td><!--</td--><td><!--</td--><td><!--</td--><td>mg/kg</td><td>TM5/PM8/PM16</td></td></td></td></td>	</td <td>68</td> <td><!--</td--><td><!--</td--><td><!--</td--><td>mg/kg</td><td>TM5/PM8/PM16</td></td></td></td>	68	</td <td><!--</td--><td><!--</td--><td>mg/kg</td><td>TM5/PM8/PM16</td></td></td>	</td <td><!--</td--><td>mg/kg</td><td>TM5/PM8/PM16</td></td>	</td <td>mg/kg</td> <td>TM5/PM8/PM16</td>	mg/kg	TM5/PM8/PM16
Total alionatics and aromatics(C5-35)	<19	<19	<19	<19	<19	<19	<19	312	<19	<19	<19	mg/kg	TMS/TM36/PM6/PM12/PM16
	-00	100	-00			100	100	012	100	100	-00	ing/kg	
MTBE [#]	<5	<5	<5 ^{SV}	<5	<5 ^{SV}	<5	<5	<5	<5 ^{sv}	<5	<5	ug/kg	TM31/PM12
Benzene [#]	<5	<5	<5 ^{SV}	<5	<5 ^{SV}	<5	<5	<5	<5 ^{sv}	<5	<5	ug/kg	TM31/PM12
Toluene #	<5	<5	<5 ^{SV}	15	<5 ^{SV}	<5	<5	<5	<5 ^{SV}	<5	<5	ug/kg	TM31/PM12
Ethylbenzene [#]	<5	<5	<5 ^{\$V}	<5	<5 ^{\$V}	<5	<5	<5	<5 ^{\$V}	<5	<5	ug/kg	TM31/PM12
m/p-Xylene [#]	<5	<5	<5 ^{\$V}	25	<5 ^{\$V}	<5	<5	<5	<5 ^{\$V}	<5	<5	ug/kg	TM31/PM12
o-Xylene [#]	<5	<5	<5 ^{\$V}	15	<5 ^{\$V}	<5	<5	<5	<5 ^{\$V}	<5	<5	ug/kg	TM31/PM12
PCB 28 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 52*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 101 "	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 118	<0	<5	<0	<5	<5	<5	<0	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 153 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 180 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8
Natural Moisture Content	15.8	14.5	48.7	21.1	12.3	18.9	36.0	5.3	23.1	26.2	<0.1	%	PM4/PM0
% Dry Matter 105°C	84.9	85.4	75.6	82.1	89.9	84.1	77.3	94.7	82.2	79.6	<0.1	%	NONE/PM4
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Chromium III	55.9	42.8	63.0	111.8	113.4	51.4	75.3	-	90.0	57.3	<0.5	mg/kg	NONE/NONE
Chromium III	-	-	-	-	-	-	-	36.1	-	-	<0.5	mg/kg	NONE/NONE
Tatal Oscaria Cashan #	1 5 4	0.62	2.50	0.51	2.00	1.06	0.65	NDD	0.57	2.20	-0.02	0/	TM21/DM24
rotar Organic Carbon	1.04	0.02	3.39	0.51	3.09	1.00	0.05	NDF	9.07	2.39	<0.0Z	/0	1112 1/ 11124
Loss on Ignition #	3.8	2.2	9.4	3.9	4.9	3.1	3.3	NDP	8.9	4.9	<1.0	%	TM22/PM0
pH [#]	8.35	8.77	7.92	9.42	7.76	8.76	8.62	9.67	8.38	8.62	<0.01	pH units	TM73/PM11
												-	
Mass of raw test portion	0.1057	0.1055	0.1186	0.1101	0.1005	0.1068	0.1162	0.0953	0.1097	0.1131		kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/5381

Report : Solid

	J E Sample No.	61-63	64-66	67-69	70-72	73-75	76-78	79-81	82-84	85-87			
	Sample ID	WS114	WS115	WS115	WS115	WS117	WS117	WS117	WS117	WS117			
	Depth	2.60	0.50	1.50	2.50	0.50	1.50	2.50	3.50	4.00	Please se	e attached n	otes for all
	COC No / misc										abbrevi	ations and a	cronyms
	Containers	ТLV	VJT	ТГЛ	ТLV	ТLV	ТLV	ТLV	ТLV	VJT			
	Sample Date	20/02/2010	21/02/2010	21/02/2010	21/02/2010	21/02/2010	21/02/2010	21/02/2010	21/02/2010	21/02/2010			
		30/03/2019	51/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019			
	Sample Type	Soil											
	Batch Number	1	1	1	1	1	1	1	1	1	 LOD/LOR	Units	Method
	Date of Receipt	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019			NO.
Antimony		3	2	2	-	-	2	3	2	2	<1	mg/kg	TM30/PM15
Arsenic [#]		23.8	11.8	12.1	-	-	8.2	10.6	20.8	12.9	<0.5	mg/kg	TM30/PM15
Barium [#]		122	89	140	-	-	64	61	148	28	<1	mg/kg	TM30/PM15
Cadmium [#]		2.1	1.9	2.4	-	-	1.1	1.9	2.2	0.8	<0.1	mg/kg	TM30/PM15
Chromium*		85.1	47.7	42.1	-	-	58.0	49.7	65.1	85.0	<0.5	mg/kg	TM30/PM15
Copper"		19	28	31	-	-	15	27	17	8	<1	mg/kg	TM30/PM15
Lead		51 <0.1	24 <0.1	21	-	-	31 -01	20	43	14	<0 1	mg/kg	TM30/PM15
Molybdenum #		64	65	67		-	52	57	5.0	62	<0.1	mg/kg	TM30/PM15
Nickel [#]		45.1	41 1	50.0	-	-	24.7	38.8	54.4	21.1	<0.7	ma/ka	TM30/PM15
Selenium [#]		2	9	4	-	-	1	3	2	1	<1	mg/kg	TM30/PM15
Zinc [#]		159	90	98	-	-	62	76	178	60	<5	mg/kg	TM30/PM15
Antimony		-	-	-	2	2	-	-	-	-	<1	mg/kg	TM30/PM62
Arsenic		-	-	-	11.5	8.3	-	-	-	-	<0.5	mg/kg	TM30/PM62
Barium		-	-	-	91	56	-	-	-	-	<1	mg/kg	TM30/PM62
Cadmium		-	-	-	2.0	1.1	-	-	-	-	<0.1	mg/kg	TM30/PM62
Chromium		-	-	-	18.0	10.8	-	-	-	-	<0.5	mg/kg	TM30/PM62
Copper		-	-	-	29	29	-	-	-	-	<1	mg/kg	TM30/PM62
Lead		-	-	-	22	34	-	-	-	-	<5	mg/kg	TM30/PM62
Mercury		-	-	-	<0.1	<0.1	-	-	-	-	<0.1	mg/kg	TM30/PM62
Molybdenum		-	-	-	2.9	1.9	-	-	-	-	<0.1	mg/kg	TM30/PM62
Nickel		-	-	-	40.6	23.8	-	-	-	-	<0.7	mg/kg	TM30/PM62
Selenium		-	-	-	2	<1	-	-	-	-	<1	mg/kg	TM30/PM62
ZINC		-	-	-	106	01	-	-	-	-	<0	mg/kg	11030/P1062

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/5381

Report : Solid

										-		
J E Sample No.	61-63	64-66	67-69	70-72	73-75	76-78	79-81	82-84	85-87			
Sample ID	WS114	WS115	WS115	WS115	WS117	WS117	WS117	WS117	WS117			
Depth	2.60	0.50	1.50	2.50	0.50	1.50	2.50	3.50	4.00	Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	20/02/2010	21/02/2010	21/02/2010	21/02/2010	21/02/2010	21/02/2010	21/02/2010	21/02/2010	21/02/2010			
Sample Date	30/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			1
Batch Number	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019			No.
PAH MS												
Naphthalene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Pyrene #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene *	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	TM4/PM8
Chrysene *	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene"	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	
Benzo(a)pyrene "	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	
Indeno(123ca)pyrene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	
Dibenzo(an)anthracene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	ma/ka	TM4/PM8
PAH 17 Total	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	ma/ka	TM4/PM8
Benzo(b)fluoranthene	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	ma/ka	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	92	96	94	89	97	94	94	94	92	<0	%	TM4/PM8
Mineral Oil (C10-C40)	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	mg/kg	TM5/PM8/PM16
TPH CWG												
Aliphatics												
>C5-C6 [#]	<0.1	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	mg/kg	TM36/PM12
>C6-C8 [#]	<0.1	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.6	<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1 ^{sv}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 [#]	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21 #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35 #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	mg/kg	TM5/TM36/PM8/PM12/PM1
												•

Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/5381

Report : Solid

J E Sample No.	61-63	64-66	67-69	70-72	73-75	76-78	79-81	82-84	85-87			
Sample ID	WS114	WS115	WS115	WS115	WS117	WS117	WS117	WS117	WS117			
Depth	2.60	0.50	1.50	2.50	0.50	1.50	2.50	3.50	4.00	Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	30/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
	3011	301	301	3011	3011	301	301	301	301			
Batch Number	1	1	1	1	1	1	1	1	1	 LOD/LOR	Units	Method No
Date of Receipt	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019			
TPH CWG												
Aromatics	-0.1	SV	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	ma/ka	TM26/DM12
>C5-EC7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 [#]	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 [#]	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 #	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	mg/kg	TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35)	<38	<38	<38	<38	<38	<38	<38	<38	<38	<38	mg/kg	TM5/TM38/PM8/PM12/PM16
		_SV							77			TM24/DM42
MIBE"	<5	<5°°	<0	<0	<0	<5	<5	<5	-5	<5	ug/kg	TM31/PM12
Toluene #	<5	<5 <5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Ethylbenzene [#]	<5	<5 <5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
m/p-Xylene #	<5	<5 ^{SV}	<5	<5	<5	<5	<5	<5	7	<5	ug/kg	TM31/PM12
o-Xylene [#]	<5	<5 ^{\$V}	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
PCB 28 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 52 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 101 *	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 118	<5	<0	<0	<0	<0	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 153 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 180 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8
Natural Moisture Content	43.3	12.7	12.1	15.7	18.9	20.7	14.2	45.1	19.9	<0.1	%	PM4/PM0
% Dry Matter 105°C	77.0	88.0	91.6	76.5	85.4	81.1	85.6	69.6	86.6	<0.1	%	NONE/PM4
	.0.2	.0.2	.0.2	.0.2	.0.2	.0.2	.0.2	.0.2	.0.2	.0.2		TM28/DM20
Chromium III	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	NONE/NONE
Chromium III	-	-	-	18.0	10.8	-	-	-	-	<0.5	mg/kg	NONE/NONE
Total Organic Carbon [#]	1.55	0.78	0.55	NDP	NDP	0.69	1.00	1.67	0.52	<0.02	%	TM21/PM24
Loss on Ignition#	5.6	2.6	2.4	NDP	NDP	2.1	2.3	6.6	1.6	<1.0	%	TM22/PM0
рН #	8.42	8.17	8.37	8.67	8.30	8.30	8.46	7.48	8.22	<0.01	pH units	TM73/PM11
Mass of raw test portion	0.1171	0.1024	0.0987	0.1171	0.1054	0.1107	0.1051	0.129	0.1039		kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17

Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/5381

Report : CEN 10:1 1 Batch

Sample ID Intel Intel Oracle Oracle Sample ID Intel Sample ID Oracle Sample ID Sample I	J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30			
Dep 100 <th>Sample ID</th> <th>BH101</th> <th>BH101</th> <th>WS104</th> <th>WS104</th> <th>WS104</th> <th>WS106</th> <th>WS106</th> <th>WS106</th> <th>WS106</th> <th>WS108</th> <th></th> <th></th> <th></th>	Sample ID	BH101	BH101	WS104	WS104	WS104	WS106	WS106	WS106	WS106	WS108			
COC 16 /m Mo	Depth	0.50	1.00	0.50	1.50	2.50	0.50	1.00	2.20	2.80	0.50			
Construint VJT	COC No / miss											Please se abbrevi	e attached n	otes for all cronyms
Container O/1 O/1 <tho 1<="" th=""> O/1 <tho 1<="" th=""> <tho 1<<="" th=""><th>COC NO7 misc</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tho></tho></tho>	COC NO7 misc													
Sample Due Source 10 <	Containers	VJT												
Samp Prop Soit	Sample Date	30/03/2019	30/03/2019	31/03/2019	31/03/2019	31/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	31/03/2019			
Batch Numme 1 <th1< th=""> 1 1 1 1</th1<>	Sample Type	Soil												
Date of Recent 2004/2019 0201/2019 0201/2019 0201/2019 0201/2019 0201/2019 0201/2019 0201/2019 0201/2019 0201/2019 0201/2019 0201/2019 <	Batch Number	1	1	1	1	1	1	1	1	1	1	1.00/1.00		Method
Descrived Aranem, (A10)* 0.49 0.32 0.03 <0.02	Date of Receipt	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	LOD/LOR	Units	No.
Desceived Avenue (A10)* 0.222 0.034 0.025 0.035 0.016 0.015 0.016 0.015 0.016 0.015 0.016 0.015 0.016 0.015 0.016 0.016 0.016 0.016 0.016 0.016 0.016 <th0.01< th=""> 0.016 0.016<</th0.01<>	Dissolved Antimony (A10) #	0.49	0.32	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.04	<0.02	mg/kg	TM30/PM17
Description (11)* -0.03 0.05 -0.005 0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 model	Dissolved Arsenic (A10)#	0.202	0.031	0.094	<0.025	<0.025	0.030	<0.025	<0.025	<0.025	0.052	<0.025	mg/kg	TM30/PM17
Descente codos codos <	Dissolved Barium (A10) #	<0.03	0.18	<0.03	0.10	0.06	0.16	0.45	<0.03	<0.03	0.18	<0.03	mg/kg	TM30/PM17
Descense Control 0.024 0.034 -0.015 0.045 -0.015 0.015 0.016 0.017 mage TM30 Deschwid Capper (M10* 0.007 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03	Dissolved Cadmium (A10) #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM30/PM17
Descented Copper (11)* 0.07 0.0	Dissolved Chromium (A10)#	<0.015	0.024	0.049	<0.015	<0.015	0.083	0.445	<0.015	<0.015	0.018	<0.015	mg/kg	TM30/PM17
Descent Land (A10)* <0.05	Dissolved Copper (A10)#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM30/PM17
Dissolved Mercury (A10)* -0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 mgke TRGG Dissolved Mexbdenum (A10)* 0.04 0.01 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.03 0.0	Dissolved Lead (A10) #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM30/PM17
Descrived Molychorum (110)* 0.04 0.17 0.08 0.05 0.03 -0.02 0.08 0.18 0.03 -0.02 may be than than (110)* Descrived Selimin (110)* -0.03 <t< th=""><th>Dissolved Mercury (A10) #</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th>mg/kg</th><th>TM30/PM17</th></t<>	Dissolved Mercury (A10) #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	TM30/PM17
Disastved Nicial (110)* c0.02 c0.03 c0.03 <thc0.03< th=""> <thc> <thc0.010< th="" th<=""><th>Dissolved Molybdenum (A10) #</th><th>0.04</th><th>0.17</th><th>0.08</th><th>0.05</th><th>0.03</th><th><0.02</th><th>0.06</th><th>0.18</th><th>0.03</th><th>0.30</th><th><0.02</th><th>mg/kg</th><th>TM30/PM17</th></thc0.010<></thc></thc0.03<>	Dissolved Molybdenum (A10) #	0.04	0.17	0.08	0.05	0.03	<0.02	0.06	0.18	0.03	0.30	<0.02	mg/kg	TM30/PM17
Descrived Setentium (A10)* -0.03 -0.05 -	Dissolved Nickel (A10) #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Descrived Znc (A10)* -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 mg/m TM38 Total Phenols HP.C -0.05	Dissolved Selenium (A10) #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.06	<0.03	mg/kg	TM30/PM17
Total Phenois HPLC <0.05	Dissolved Zinc (A10) [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.05	<0.03	0.03	<0.03	<0.03	mg/kg	TM30/PM17
Fluinde -3 4 -3 7 -3 -3 7 5 3 -3 -3 mgkg TM17 Sulphate as SO4* 95 63 129 285 280 20 52 40 6 287 -5 mgkg TM37 Chinde -3 -3 -3 -3 -3 5 -3 5 6 287 7 76 5 3 5 6 287 7 76 7 5 1 5 6 287 7 mgkg TM37 Dissolved Organic Carbon -22 -22 -22 -22 -22 -20 -20 -20 20 20 20 -20 mg/kg TM67 Dissolved Organic Carbon -20 -20 -20 -20 -20 -20 mg/kg TM67 Total Dissolved Solids* 770 980 1000 1270 840 860 950 570 -350 <th>Total Phenols HPLC</th> <th><0.05</th> <th>mg/l</th> <th>TM26/PM0</th>	Total Phenols HPLC	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/l	TM26/PM0
Subplace as $SO4^4$ 95 6.3 129 285 280 2.0 5.2 4.0 6.6 2.87 4.5 mg/kg TM3 Choride* -	Fluoride	<3	4	<3	7	<3	<3	7	5	3	<3	<3	mg/kg	TM173/PM0
Subpate as SOA* 95 63 129 280 200 52 400 6 287 4.5 mg/g TM3 Chloride* -3 -3 -3 -3 5 -3 5 -3 5 -3 5 -43 5 6.6 -3 mg/g TM3 Dissolved Organic Carbon -22 -22 -22 -22 -22 -22 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 mg/g TM6 Dissolved Organic Carbon -20 -20 -20 -20 -20 -20 -20 mg/g TM2 -20 -20 -20 mg/g TM2 Total Dissolved Solds* 770 960 1000 1270 840 860 950 570 <350														
Chloride* -3 -3 -3 -3 5 6 -3 mg/kg TM3 Dissolved Organic Carbon -20 -20 -20 -20 -20 -20 -20 30 20 20 -20 -20 mg/kg TM3 Dissolved Solids* 770 960 1000 1270 840 860 950 570 <350 2909 <350 mg/kg TM2 Dissolved Solids* 770 960 1000 1270 840 860 950 570 <350 2909 <350 mg/kg TM2	Sulphate as SO4 #	95	63	129	285	280	20	52	40	6	287	<5	mg/kg	TM38/PM0
Dissolved Organic Carbon -2 mg/kg TM6(Dissolved Organic Carbon -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 mg/kg TM6(Total Dissolved Solids [#] 770 960 1000 1270 840 860 950 570 -350 2909 -350 mg/kg TM2(Total Dissolved Solids [#] 770 960 1000 1270 840 100	Chloride #	<3	<3	<3	<3	5	<3	5	<3	5	6	<3	mg/kg	TM38/PM0
Dissolved Organic Carbon -20 -20 -20 -20 -20 -20 mg/kg TM60 Total Dissolved Solids ⁴ 770 960 1000 1270 840 860 950 570 -350 2909 -350 mg/kg TM20 Total Dissolved Solids ⁴ 770 960 1000 1270 840 860 950 570 -350 2909 -350 mg/kg TM20 International Solids ⁴ 770 960 1000 1270 840 860 950 570 -350 2909 -350 mg/kg TM20 International Solids ⁴ 770 960 1000 1270 840 860 950 570 -350 2909 -350 170<	Dissolved Organic Carbon	<2	<2	<2	<2	<2	<2	3	2	2	2	<2	mg/l	TM60/PM0
Total Dissolved Solids* 770 960 1000 1270 840 860 950 570 <350	Dissolved Organic Carbon	<20	<20	<20	<20	<20	<20	30	20	20	<20	<20	mg/kg	TM60/PM0
Image: state stat														

Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/5381

Report : CEN 10:1 1 Batch

J E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57	58-60	l		
Sample ID	WS108	WS108	WS108	WS113	WS113	WS113	WS113	WS114	WS114	WS114			
Depth	1.50	2.50	3.50	1.20	1.70	2.30	2.60	0.50	1.50	2.50	Diagon or	a attached a	otoo for all
COC No / misc											abbrevi	ations and ac	cronyms
Containers	VIT	VIT	VIT	VIT	VIT	VIT	VIT	VIT	VIT	VIT	1		
Oceanda Deta	001	• • • • • • • •	0.1/00/0010	00/00/00/0	001	001	001	001	001	001	1		
Sample Date	31/03/2019	31/03/2019	31/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	1		
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			1
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019			No.
Dissolved Antimony (A10) #	<0.02	<0.02	0.04	<0.02	<0.02	<0.02	<0.02	0.71	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Arsenic (A10) #	0.030	<0.025	0.043	0.027	0.051	0.069	<0.025	<0.025	<0.025	0.047	<0.025	mg/kg	TM30/PM17
Dissolved Barium (A10) #	0.09	0.03	0.38	0.08	<0.03	0.04	0.04	0.10	0.11	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015	<0.015	0.172	0.026	<0.015	0.028	0.346	<0.015	<0.015	<0.015	mg/kg	TM30/PM17
Dissolved Copper (A10)*	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM30/PM17
Dissolved Lead (A10)"	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM30/PM17
Dissolved Mercury (A10) "	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	TM30/PM17
Dissolved Nickel (A10) #	<0.02	<0.02	0.43	<0.02	<0.02	-0.02	<0.07	0.03	<0.04	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Nickel (A10)	0.06	<0.02	<0.03	<0.02	<0.02	<0.02	<0.02	<0.03	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Zinc (A10) #	<0.03	<0.03	<0.03	<0.03	0.05	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	ma/ka	TM30/PM17
												5.5	
Total Phenols HPLC	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/l	TM26/PM0
Fluoride	<3	3	<3	6	6	4	4	<3	9	<3	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	950	55	9	2654	228	119	135	653	434	66	<5	mg/kg	TM38/PM0
Chloride [#]	29	<3	19	1827	405	143	244	164	9	<3	<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	<2	<2	8	3	3	<2	<2	10	<2	<2	<2	mg/l	TM60/PM0
Dissolved Organic Carbon	<20	<20	80	30	30	<20	<20	100	<20	<20	<20	mg/kg	TM60/PM0

Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/5381

Report : CEN 10:1 1 Batch

J E Sample No.	61-63	64-66	67-69	70-72	73-75	76-78	79-81	82-84	85-87	1		
Sample ID	WS114	WS115	WS115	WS115	WS117	WS117	WS117	WS117	WS117			
Depth	2.60	0.50	1.50	2.50	0.50	1.50	2.50	3.50	4.00	Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	ТLV	ТLV	ТГЛ	ТLV	ТLV	ТLV	ТLV	ТLV	ТLV	1		
Sample Date	20/02/2010	21/02/2010	21/02/2010	21/02/2010	21/02/2010	21/02/2010	21/02/2010	21/02/2010	21/02/2010	1		
Sample Date	30/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019			
Sample Type	Soil	<u> </u>		1								
Batch Number	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019			INO.
Dissolved Antimony (A10) #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	0.06	<0.02	mg/kg	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025	<0.025	0.028	<0.025	<0.025	<0.025	0.066	0.060	<0.025	mg/kg	TM30/PM17
Dissolved Barium (A10) #	0.05	0.14	0.08	<0.03	0.17	0.20	0.22	0.20	0.06	<0.03	mg/kg	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM30/PM17
Dissolved Chromium (A10) "	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	mg/kg	TM30/PM17
Dissolved Copper (A10) "	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM30/PM17
Dissolved Lead (A10)"	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum (A10)	0.07	0.15	0.10	0.15	0.36	0.29	0.21	0.35	0.27	<0.01	mg/kg	TM30/PM17
Dissolved Nickel (A10) #	<0.02	<0.02	<0.02	<0.02	<0.00	<0.02	<0.02	0.05	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Selenium (A10) #	<0.03	0.20	0.20	0.09	0.05	0.05	0.06	<0.03	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Zinc (A10) #	0.04	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	<0.03	mg/kg	TM30/PM17
Total Phenols HPLC	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/l	TM26/PM0
Fluoride	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	69	14129	29516	12245	29554	14524	13207	14375	8161	<5	mg/kg	TM38/PM0
Chloride #	16	153	34	23	5	13	<3	9	46	<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	3	<2	<2	<2	<2	<2	<2	14	3	<2	mg/l	TM60/PM0
Dissolved Organic Carbon	30	<20	<20	<20	<20	<20	<20	140	30	<20	mg/kg	TM60/PM0
Total Dissolved Solids *	980	21216	20914	1130	1581	1870	970	780	1030	<350	mg/kg	TM20/PM0

Client Name:Ground Investigations IrelandReference:8507-02-19Location:Hickeys 43 Parkgate PlaceContact:Stephen KealyJE Job No.:19/5381

Report : EN12457_2

J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30						
Sample ID	BH101	BH101	WS104	WS104	WS104	WS106	WS106	WS106	WS106	WS108						
Depth	0.50	1.00	0.50	1.50	2.50	0.50	1.00	2.20	2.80	0.50				Please se	e attached n	otes for all
COC No / misc														abbrevi	iations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT						
Sample Date	30/03/2019	30/03/2019	31/03/2019	31/03/2019	31/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	31/03/2019						
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
Batah Number	1	1	1	1	1	1	1	1	1	4						
Bateri Number	-	-	-	-	-	-	-	-	-		Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
Date of Receipt	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019						
Solid Waste Analysis	1.26	NDP	10.83	13.27	1.03	4.43	11 12	4.68	0.52	NDP	3	5	6	<0.02	94	TM21/PM24
Sum of BTEX	<0.025	-0.025SV	10.03	10.025 ^{SV}	<0.025	<0.025	-0.025 ^{SV}	4.00	<0.02	<0.025	6	5		<0.02	76 ma/ka	TM21/FM24
Sum of 7 PCBs#	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	1	-	-	<0.025	mg/kg	TM17/PM8
Mineral Oil	146	33	<30	<30	<30	<30	<30	<30	<30	<30	500	-	-	<30	ma/ka	TM5/PM8/PM16
PAH Sum of 17	11.03	12.05 _{RA}	1.66	1.27	<0.64	274.12	31.58	<0.64	<0.64	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
		-														
CEN 10:1 Leachate																
Mass of raw test portion	0.1011	0.1083	0.1102	0.1095	0.1202	0.1103	0.1316	0.1151	0.1138	0.1071	-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	89.5	83.1	81.6	82.4	75.0	81.4	68.3	78.1	79.3	84.3	-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.889	0.882	0.88	0.881	0.87	0.879	0.858	0.875	0.877	0.883	-	-	-		I	NONE/PM17
Eluate Volume	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	-	-	-		1	NONE/PM17
																-

Client Name:Ground Investigations IrelandReference:8507-02-19Location:Hickeys 43 Parkgate PlaceContact:Stephen KealyJE Job No.:19/5381

Report : EN12457_2

J E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57	58-60						
Sample ID	W\$108	WS108	W\$108	W\$113	WS113	WS113	WS113	WS114	WS114	WS114						
Depth	1.50	2.50	3.50	1.20	1.70	2.30	2.60	0.50	1.50	2.50				Please se	e attached n	otes for all
COC No / misc														abbrevi	iations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT						
Sample Date	31/03/2019	31/03/2019	31/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019	30/03/2019						
Sample Ture	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
Sample Type	301	301	3011	3011	3011	301	301	301	301	301						T
Batch Number	1	1	1	1	1	1	1	1	1	1	Inert	Stable Non-	Hazardous	LOD LOR	Units	Method
Date of Receipt	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019		Todotivo				140.
Solid Waste Analysis											-	_	_			
Total Organic Carbon	1.54	0.62	3.59	0.51	3.09	1.06	0.65	NDP	9.57	2.39	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025 ^{sv}	0.055	<0.025 ^{sv}	<0.025	<0.025	<0.025	<0.025 ^{sv}	<0.025	6	-	-	<0.025	mg/kg	TM31/PM12
Sum of 7 PCBs"	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	<30	<30	<30	<30	283	<30	<30	500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 17	<0.64	<0.64	<0.64	<0.64	0.88	<0.64	<0.64	15.19	1.17	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
Mass of raw test portion	0.1057	0.1055	0.1186	0.1101	0.1005	0.1068	0.1162	0.0953	0.1097	0.1131	-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	84.9	85.4	75.6	82.1	89.9	84.1	77.3	94.7	82.2	79.6	-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.884	0.885	0.871	0.88	0.89	0.883	0.874	0.895	0.881	0.877	-	-	-		I	NONE/PM17
Eluate Volume	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	-	-	-		I	NONE/PM17
																ĺ

 Client Name:
 Ground Investigations Ireland

 Reference:
 8507-02-19

 Location:
 Hickeys 43 Parkgate Place

 Contact:
 Stephen Kealy

 JE Job No.:
 19/5381

Report : EN12457_2

LE Sample No	61-63	64-66	67-69	70-72	73-75	76-78	79-81	82-84	85-87	1					
5 L Sample No.	01 00	04 00	0/ 00	1012	1010	1010	75 01	02 04	00 07						
Sample ID	WS114	WS115	WS115	WS115	WS117	WS117	WS117	WS117	WS117						
Depth	2.60	0.50	1.50	2.50	0.50	1.50	2.50	3.50	4.00	Ì					
COC No (miss													Please se abbrevi	e attached n ations and a	otes for all cronyms
COC NO / MISC															
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT						
Sample Date	30/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019	31/03/2019						
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1	1	1	1	1		Otable New				Mothod
Date of Receipt	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019	Inert	reactive	Hazardous	LOD LOR	Units	No.
Solid Waste Analysis															
Total Organic Carbon #	1.55	0.78	0.55	NDP	NDP	0.69	1.00	1.67	0.52	3	5	6	< 0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025 ^{SV}	< 0.025	<0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	6	-	-	< 0.025	ma/ka	TM31/PM12
Sum of 7 PCBs	< 0.035	<0.035	< 0.035	< 0.035	< 0.035	< 0.035	< 0.035	< 0.035	< 0.035	1	-	-	< 0.035	ma/ka	TM17/PM8
Mineral Oil	<30	<30	<30	<30	<30	<30	<30	<30	<30	500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 17	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate															
Mass of raw test portion	0.1171	0.1024	0.0987	0.1171	0.1054	0.1107	0.1051	0.129	0.1039	-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	77.0	88.0	91.6	76.5	85.4	81.1	85.6	69.6	86.6	-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.873	0.888	0.892	0.872	0.885	0.879	0.885	0.861	0.886	-	-	-		I	NONE/PM17
Eluate Volume	0.8	0.8	0.79	0.76	0.79	0.78	0.78	0.75	0.8	-	-	-		I	NONE/PM17
		1	1			1	1	1		1		1	1		1

Client Name:	Ground Investigations Ireland
Reference:	19/02/8507
Location:	Hickeys 43 Parkgate Place
Contact:	Stephen Kealy

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

a part

Ryan Butterworth Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
19/5381	1	BH101	0.50	2	04/04/2019	General Description (Bulk Analysis)	soil.stones
					04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	NAD
					04/04/2019	Asbestos Level Screen	NAD
19/5381	1	BH101	1.00	5	04/04/2019	General Description (Bulk Analysis)	soil.stones
					04/04/2019	Asbestos Fibres	Fibre Bundles
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	Chrysotile
					04/04/2019	Asbestos Level Screen	less than 0.1%
					13/04/2019	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					13/04/2019	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					13/04/2019	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					15/04/2019	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					15/04/2019	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
19/5381	1	WS104	0.50	8	04/04/2019	General Description (Bulk Analysis)	soil-stones
					04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	NAD
					04/04/2019	Asbestos Level Screen	NAD
19/5381	1	WS104	1.50	11	04/04/2019	General Description (Bulk Analysis)	soil-stones
					04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	NAD
					04/04/2019	Asbestos Level Screen	NAD
19/5381	1	WS104	2.50	14	04/04/2019	General Description (Bulk Analysis)	soil-stones
					04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	NAD
					04/04/2019	Asbestos Level Screen	NAD
19/5381	1	WS106	0.50	17	04/04/2019	General Description (Bulk Analysis)	soil-stones
					04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	NAD

Jones Environmental Laboratory

Client N Referer Locatic Contac	Name: nce: on: t:		Ground In 19/02/850 Hickeys 4 Stephen	nvestigati)7 13 Parkga Kealy	ions Ireland ate Place
J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis Result	
19/5381	1	WS106	0.50	17	04/04/2019	Asbestos Level Screen	NAD
19/5381	1	WS106	1.00	20	04/04/2019	General Description (Bulk Analysis)	soil-stones
					04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	NAD
					04/04/2019	Asbestos Level Screen	NAD
19/5381	1	WS106	2.20	23	04/04/2019	General Description (Bulk Analysis)	soil-stones
					04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	NAD
					04/04/2019	Asbestos Level Screen	NAD
					0 110 112010		
19/5381	1	WS106	2.80	26	04/04/2019	General Description (Bulk Analysis)	soil/stones
10/0001			2.00	20	04/04/2019	Ashestos Fibres	NAD
					04/04/2019	Ashestos ACM	NAD
					04/04/2013		NAD
					04/04/2013	Ashestos Level Screen	NAD
					04/04/2013		
10/5381	1	WS108	0.50	20	04/04/2019	General Description (Bulk Analysis)	Soil/Stones
13/3301		110100	0.50	23	04/04/2013	Ashostos Eibros	
					04/04/2019	Asbestos ACM	
					04/04/2019	Asbestos Tupo	Christia
					04/04/2019	Asbestos Lovel Screen	
					13/04/2019	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					12/04/2019	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					13/04/2019	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					15/04/2019	Ashestos PCOM Quantification (Fibres)	<0.001 (mass %)
					15/04/2019	Asbestos Cravimetric & PCOM Total	<0.001 (mass %)
					10/04/2010		
19/5381	1	WS108	1 50	32	04/04/2019	General Description (Bulk Analysis)	soil stones
13/3301		110100	1.50	52	04/04/2013	Ashostos Eibros	
					04/04/2010		
					04/04/2019		NAD
					04/04/2019	Ashestos Level Screen	NAD
					04/04/2013		
10/5381	1	WS108	2 50	35	04/04/2019	General Description (Bulk Analysis)	soil-satones
13/3301		110100	2.50		04/04/2019	Ashestos Eibres	NAD
					04/04/2019		NAD
					04/04/2013		NAD
					04/04/2013	Ashestos Level Screen	NAD
					04/04/2013		
19/5281	1	WS108	3 50	38	04/04/2010	General Description (Bulk Analysis)	Soil/Stones
13/3301	'		5.50	50	04/04/2019	Ashastas Fibras	
					04/04/2019	Ashestos ACM	NAD
					04/04/2019	Ashastas Tuna	
					04/04/2019	Ashastas Level Scroon	
					04/04/2019		
10/5201	1	WS113	1 20	11	04/04/2010	General Description (Bulk Applycia)	soil/stones
10/0001	1		1.20	41	04/04/2019	Ashestos Fibres	
					04/04/2019	Ashestos ACM	NAD
					04/04/2019	Ashastas Tuna	
					07/04/2019	Honearda i the	

Jones Environmental Laboratory

Client N Referer Locatic Contac	Name: nce: on: t:		Ground Ir 19/02/850 Hickeys 4 Stephen	nvestigati 07 13 Parkga Kealy	ions Ireland ate Place
J E	Batch	Sample ID	Dopth	J E Samplo	Date Of

•••••••							
J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
19/5381	1	WS113	1.20	41	04/04/2019	Asbestos Level Screen	NAD
19/5381	1	WS113	1.70	44	04/04/2019	General Description (Bulk Analysis)	soil-stones
					04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	NAD
					04/04/2019	Asbestos Level Screen	NAD
10/5201	1	W/\$112	2.20	47	04/04/2010	Conorol Departmention (Bulk Analysia)	Sail/Stance
19/0001	,	WOTIS	2.30	47	04/04/2019	Ashestos Fibres	NAD
					04/04/2019		NAD
					04/04/2019	Ashestos Tyne	NAD
					04/04/2019	Asbestos I evel Screen	NAD
19/5381	1	WS113	2.60	50	04/04/2019	General Description (Bulk Analysis)	soil/stones
					04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	NAD
					04/04/2019	Asbestos Level Screen	NAD
19/5381	1	WS114	0.50	53	04/04/2019	General Description (Bulk Analysis)	Soil/Stones
					04/04/2019	Asbestos Fibres	Fibre Bundles
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	Chrysotile
					04/04/2019	Asbestos Level Screen	less than 0.1%
					13/04/2019	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					13/04/2019	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					13/04/2019	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					15/04/2019	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					15/04/2019	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
19/5381	1	WS114	1.50	56	04/04/2019	General Description (Bulk Analysis)	Soil/Stones
					04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Lovel Sereen	
					04/04/2019	Aspestos Level Screen	
19/5381	1	WS114	2 50	59	04/04/2019	General Description (Bulk Analysis)	soil stones
10/0001		nonn	2.00	00	04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	NAD
					04/04/2019	Asbestos Level Screen	NAD
19/5381	1	WS114	2.60	62	04/04/2019	General Description (Bulk Analysis)	Soil/Stones
					04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	NAD
					04/04/2019	Asbestos Level Screen	NAD
19/5381	1	WS115	0.50	65	04/04/2019	General Description (Bulk Analysis)	soil.stones
					04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	NAD

Jones Environmental Laboratory

Client Name:	Ground Investigations Ireland
Reference:	19/02/8507
Location:	Hickeys 43 Parkgate Place
Contact:	Stephen Kealy

Contac	ι.		Stephen	Realy			
J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
19/5381	1	WS115	0.50	65	04/04/2019	Asbestos Level Screen	NAD
19/5381	1	WS115	1.50	68	04/04/2019	General Description (Bulk Analysis)	soil/stones
					04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	NAD
					04/04/2019	Asbestos Level Screen	NAD
19/5381	1	WS115	2.50	71	04/04/2019	General Description (Bulk Analysis)	soil-stones
					04/04/2019	Asbestos Fibres	Fibre Bundles
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	Chrysotile
					04/04/2019	Asbestos Level Screen	less than 0.1%
					13/04/2019	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					13/04/2019	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					13/04/2019	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					15/04/2019	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					15/04/2019	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
19/5381	1	WS117	0.50	74	04/04/2019	General Description (Bulk Analysis)	soil-stones
					04/04/2019	Asbestos Fibres	Fibre Bundles
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	Chrysotile
					04/04/2019	Asbestos Level Screen	less than 0.1%
					13/04/2019	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					13/04/2019	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					13/04/2019	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					15/04/2019	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					15/04/2019	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
19/5381	1	WS117	1.50	77	04/04/2019	General Description (Bulk Analysis)	soil-stones
					04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	NAD
					04/04/2019	Asbestos Level Screen	NAD
19/5381	1	WS117	2.50	80	04/04/2019	General Description (Bulk Analysis)	soil/stones
					04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	NAD
					04/04/2019	Asbestos Level Screen	NAD
19/5381	1	WS117	3.50	83	04/04/2019	General Description (Bulk Analysis)	soil/stones
					04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	NAD
					04/04/2019	Asbestos Level Screen	NAD
19/5381	1	WS117	4.00	86	04/04/2019	General Description (Bulk Analysis)	soil.stones
					04/04/2019	Asbestos Fibres	NAD
					04/04/2019	Asbestos ACM	NAD
					04/04/2019	Asbestos Type	NAD
					04/04/2019	Asbestos Level Screen	NAD

NDP	Reason	Report
-----	--------	--------

Matrix : Solid

Client Name:	Ground Investigations Ireland
Reference:	8507-02-19
Location:	Hickeys 43 Parkgate Place
Contact:	Stephen Kealy

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Method No.	NDP Reason
19/5381	1	BH101	1.00	4-6	TM21/PM24	Asbestos detected in sample
19/5381	1	BH101	1.00	4-6	TM22/PM0	Asbestos detected in sample
19/5381	1	WS108	0.50	28-30	TM21/PM24	Asbestos detected in sample
19/5381	1	WS108	0.50	28-30	TM22/PM0	Asbestos detected in sample
19/5381	1	WS114	0.50	52-54	TM21/PM24	Asbestos detected in sample
19/5381	1	WS114	0.50	52-54	TM22/PM0	Asbestos detected in sample
19/5381	1	WS115	2.50	70-72	TM21/PM24	Asbestos detected in sample
19/5381	1	WS115	2.50	70-72	TM22/PM0	Asbestos detected in sample
19/5381	1	WS117	0.50	73-75	TM21/PM24	Asbestos detected in sample
19/5381	1	WS117	0.50	73-75	TM22/PM0	Asbestos detected in sample

Client Name:Ground Investigations IrelandReference:8507-02-19Location:Hickeys 43 Parkgate PlaceContact:Stephen Kealy

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason					
	No deviating sample report results for job 19/5381										

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 19/5381

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
Ν	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution
AB	x10 Dilution
BA	x10 Dilution

Appendix - Methods used for WAC (2003/33/EC)

JE Job No.: 19/5381

Leachate tests	
10l/ka [.] 4mm	I.S. EN 12457-2:2002 Specified particle size; water added to L/S ratio; capped; agitated for 24 ± 0.5 hours; eluate settled and
rowig, min	filtered over 0.45 µm membrane filter.
Eluate analysis	
As	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ва	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cd	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cr total	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cu	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Hg	I.S. EN 13370 rec. EN 1483 (CVAAS)
Мо	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ni	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Pb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Sb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Se	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Zn	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Chloride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Fluoride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Sulphate	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Phenol index	I.S. EN 13370 rec. ISO 6439 (4-Aminoantipyrine spectrometic methods after distillation)* (BY HPLC - Jones Env)
DOC	I.S. EN 1484
TDS	I.S. EN 15216
Compositional	analysis
TOC	I.S. EN 13137 Method B: carbonates removed with acid; TOC by combustion.
BTEX	GC-FID
PCB7**	I.S. EN 15308 analysis by GC-ECD.
Mineral oil	I.S. EN 14039 C10 to C40 analysis by GC-FID.
PAH17***	I.S. EN 15527 PAH17 analysis by GC-MS
Metals	I.S. EN 13657 - Aqua regia digestion: EN ISO 11885 (ICP-OES)
Other	
	IS EN 14246, sample is dried to a constant mass in an over at 105 + 2 °C'. Method R Water content by direct Kerl Eicober
Dry matter	1.3. Et 1999 Sample is uned to a constant mass in an over at 105 ± 5 °C, Method & Water content by direct Rall-Fischer- titration and either volumetric or coulometric detection
bry matter	
LOI	I.S. EN 15169 Difference in mass after heating in a furnace up to 550 ± 25 °C.
ANC	CEN/TS 15364 Determined by amouns of acid or base needed to cover the pH range
Notes:	
*الأسط من شعاما م	

*If not suitable due to LOD, precision, etc., any other suitable method can be used, e.g. AFS, ICP-MS **PCB-28, PCB-52, PCB-101, PCB-118, PCB-138, PCB-153 and PCB-180

***Naphthalene, Acenaphthylene, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Benzo(a)pyrene, Chrysene, Coronene, Dibenzo(a,h)anthracene, Fluorene, Fluoranthene, Indeno(1,2,3-c,d)pyrene, Phenanthrene and Pyrene.

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C- 440C)	PM0	No preparation is required.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM62	Acid digestion of as received solid samples using Aqua Regia refluxed at 112.5 $^\circ\text{C}.$			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
ТМЗ8	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.	Yes		AR	Yes
ТМЗ8	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o.Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060, APHA Standard Methods for Examination of Water and Wastewater 5310B, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM131	Quantification of Asbestos Fibres and ACM, based on HSG248 and SCA method.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	NONE	No Method Code			AR	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10.1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

Ground Investigations Ireland Catherinestown House

Hazelhatch Road

Newcastle Co. Dublin Ireland

Exova Jones Environmental

Registered Office: Exova Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN. Reg No. 11371415

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Stephen Kealy
Date :	26th April, 2019
Your reference :	8507-02-19
Our reference :	Test Report 19/5621 Batch 1
Location :	Hickeys 43 Pargate Place
Date samples received :	5th April, 2019
Status :	Final report
Issue :	2

Sixteen samples were received for analysis on 5th April, 2019 of which twelve were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Where Waste Acceptance Criteria Suite (EC Decision of 19 December 2002 (2003/33/EC)) has been requested, all analyses have been performed using the relevant EN methods where they exist.

Compiled By:

Phil Sommerton BSc Project Manager

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8507-02-19 Hickeys 43 Pargate Place Stephen Kealy 19/5621

Report : Solid

												_		
	J E Sample No.	1-3	4-6	7-9	10-12	16-18	19-21	22-24	25-27	28-30	31-33			
	Sample ID	WS103	W\$103	W\$103	W\$103	WS101	WS101	WS101	WS101	WS101	BH101			
	Depth	0.60	1.60	2.60	3.50	0.50	1.00	2.00	3.00	4.00	2.00	Please se	e attached n	otes for all
	COC No / misc											abbrevi	ations and ad	cronyms
	Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
	Sample Date	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019			
	Sample Type	Soil	Roil	Soil	Poil	Soil	Soil	Soil	Soil	Soil	Soil			
		301	301	301	3011	301	301	301	301	301	301			
	Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No
	Date of Receipt	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019			
Antimony		-	4	7	2	5	-	2	1	1	2	<1	mg/kg	TM30/PM15
Arsenic*		-	6.9	13.4	16.0	11.0	-	21.9	11.5	10.1	19.9	<0.5	mg/kg	TM30/PM15
Barium " Cadacium #		-	142	156	103	51	-	97	59	56	97	<1	mg/kg	TM30/PM15
Cadmium		-	<0.1 03.7	<0.1 88.7	82.2	68.9	-	69.2	80.7	100.7	78.5	<0.1	mg/kg	TM30/PM15
Copper [#]		-	61	263.4	48	30	-	26	11	6	27	<0.5	ma/ka	TM30/PM15
Lead [#]		-	145	521	84	31	-	33	16	7	37	<5	ma/ka	TM30/PM15
Mercury [#]		-	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Molybdenum #		-	7.0	6.5	6.1	5.5	-	5.9	6.0	7.5	7.0	<0.1	mg/kg	TM30/PM15
Nickel [#]		-	36.5	49.2	41.8	20.5	-	38.4	21.8	10.3	38.3	<0.7	mg/kg	TM30/PM15
Selenium #		-	3	3	1	<1	-	1	<1	<1	<1	<1	mg/kg	TM30/PM15
Zinc [#]		-	55	75	118	59	-	133	72	31	137	<5	mg/kg	TM30/PM15
Antimony		5	-	-	-	-	5	-	-	-	-	<1	mg/kg	TM30/PM62
Arsenic		28.5	-	-	-	-	23.1	-	-	-	-	<0.5	mg/kg	TM30/PM62
Barium		238	-	-	-	-	300	-	-	-	-	<1	mg/kg	TM30/PM62
Cadmium		0.2	-	-	-	-	1.6	-	-	-	-	<0.1	mg/kg	TM30/PM62
Chromium		20.5	-	-	-	-	25.2	-	-	-	-	<0.5	mg/kg	TM30/PM62
Copper		187	-	-	-	-	134	-	-	-	-	<1	mg/kg	TM30/PM62
Lead		155	-	-	-	-	312	-	-	-	-	<5	mg/kg	TM30/PM62
Molybdenum		5.7	-	-	-	-	1.1	-	-	-	-	<0.1	mg/kg	TM30/PM62
Nickel		59.1	_	-	_	-	58.1	-	-	_	-	<0.1	ma/ka	TM30/PM62
Selenium		2	-	-	-	-	6	-	-	-	-	<1	ma/ka	TM30/PM62
Zinc		194	-	-	-	-	158	-	-	-	-	<5	mg/kg	TM30/PM62
		l											l	

Ground Investigations Ireland 8507-02-19 Hickeys 43 Pargate Place Stephen Kealy 19/5621

Report : Solid

J E Sample No.	1-3	4-6	7-9	10-12	16-18	19-21	22-24	25-27	28-30	31-33			
Sample ID	WS103	W\$103	W\$103	W\$103	WS101	WS101	WS101	WS101	WS101	BH101			
Depth	0.60	1.60	2.60	3.50	0.50	1.00	2.00	3.00	4.00	2.00	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and ac	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
	3011	301	301	301	301	301		301	301	301			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019			
PAH MS													
Naphthalene *	0.64	<0.04	0.07	<0.04	<0.04	0.07	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene *	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene "	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	0.72	0.13	0.23	<0.03	0.12	0.24	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene *	0.37	0.06	0.05	<0.03	0.11	0.23	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Pyrene *	0.36	0.06	0.06	<0.03	0.11	0.22	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene "	0.32	0.09	0.08	<0.06	0.09	0.22	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	TM4/PM8
Chrysene"	0.35	0.07	0.10	<0.02	0.10	0.19	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	
Benzo(bk)fluoranthene"	0.41	0.09	0.20	<0.07	0.13	0.31	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	
Benzo(a)pyrene "	0.15	<0.04	0.10	<0.04	0.05	0.14	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	
Indeno(123ca)pyrene	0.11	<0.04	0.11	<0.04	<0.04	0.12	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	
Dibenzo(an)anthracene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	
Benzo(gni)perviene	0.13	<0.04	0.11	<0.04	<0.04	-0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	
	2.56	<0.64	1 11	<0.64	0.71	1 97	<0.64	<0.64	<0.64	<0.64	<0.64	mg/kg	
Panzo(b)fluoranthono	0.20	0.06	0.14	<0.04	0.00	0.22	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	
Benzo(k)fluoranthene	0.30	0.00	0.06	<0.03	0.03	0.22	<0.03	<0.02	<0.03	<0.03	<0.03	ma/ka	TM4/PM8
PAH Surrogate % Recovery	92	90	91	88	91	89	91	92	90	83	<0.02	%	TM4/PM8
Mineral Oil (C10-C40)	129	<30	<30	<30	141	<30	<30	<30	<30	<30	<30	mg/kg	TM5/PM8/PM16
TPH CWG													
Aliphatics													
>C5-C6 [#]	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8 [#]	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{sv}	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{sv}	<0.1 ^{sv}	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 [#]	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21 #	24	<7	<7	<7	30	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35 [#]	105	<7	<7	<7	111	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	129	<19	<19	<19	141	<19	<19	<19	<19	<19	<19	mg/kg	TM5/TM38/PM8/PM12/PM16

Ground Investigations Ireland 8507-02-19 Hickeys 43 Pargate Place Stephen Kealy 19/5621

Report : Solid

J E Sample No.	1-3	4-6	7-9	10-12	16-18	19-21	22-24	25-27	28-30	31-33			
Sample ID	WS103	WS103	WS103	WS103	WS101	WS101	WS101	WS101	WS101	BH101			
Depth	0.60	1.60	2 60	3 50	0.50	1.00	2.00	3.00	4 00	2.00			
	0.00	1.00	2.00	5.50	0.50	1.00	2.00	5.00	4.00	2.00	Please see attached notes for all abbreviations and acronyms		
COC No / misc													
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1		11.25	Method
Date of Receipt	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	LOD/LOR	Units	No.
TPH CWG													
Aromatics													
>C5-EC7 #	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 [#]	<0.1 SV	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 SV	<0.1 SV	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16#	8	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 "	24	10	</th <th><!--</th--><th>9</th><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM16</th></th></th></th></th></th></th></th>	</th <th>9</th> <th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM16</th></th></th></th></th></th></th>	9	</th <th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM16</th></th></th></th></th></th>	</th <th><!--</th--><th><!--</th--><th><!--</th--><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM16</th></th></th></th></th>	</th <th><!--</th--><th><!--</th--><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM16</th></th></th></th>	</th <th><!--</th--><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM16</th></th></th>	</th <th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM16</th></th>	</th <th>mg/kg</th> <th>TM5/PM8/PM16</th>	mg/kg	TM5/PM8/PM16
>EC21-EC35"	114	<10	<10	<1	72	<10	<1	<10	<1	<1	<10	mg/kg	TMS/TM38/PM8/PM12/PM14
Total aliphatics and aromatics(C5-35)	275	<38	<38	<38	222	<38	<38	<38	<38	<38	<38	mg/kg	TM5/TM38/PM8/PM12/PM16
MTBE [#]	<5 ^{SV}	<5 ^{sv}	<5 ^{sv}	<5	<5 ^{SV}	<5 ^{sv}	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Benzene [#]	<5 ^{SV}	<5 ^{SV}	<5 ^{SV}	<5	9 ^{sv}	<5 ^{SV}	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Toluene [#]	<5 ^{\$V}	<5 ^{\$V}	<5 ^{\$V}	<5	<5 ^{\$V}	<5 ^{\$V}	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Ethylbenzene [#]	<5 ^{\$V}	<5 ^{SV}	<5 ^{\$V}	<5	<5 ^{\$V}	<5 ^{\$V}	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
m/p-Xylene #	<5 ^{\$V}	<5 ^{\$V}	<5 ^{\$V}	<5	<5 ^{\$V}	<5 ^{\$V}	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
o-Xylene [#]	<5 ^{SV}	<5 ^{SV}	<5 ^{\$V}	<5	<5 ^{SV}	<5 ^{SV}	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
PCB 28 *	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 52#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 118 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 138 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 153 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 180 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
Total 7 PCBs"	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8
Natural Moisture Content	19.2	14.3	20.4	30.0	8.8	19.5	28.9	19.7	15.4	33.4	<0.1	%	PM4/PM0
% Dry Matter 105°C	84.3	87.2	81.4	76.5	93.3	83.1	79.4	83.4	88.2	79.1	<0.1	%	NONE/PM4
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Chromium III	NDP	93.7	88.7	82.2	68.9	NDP	69.2	80.7	100.7	78.5	<0.5	mg/kg	NONE/NONE
Chromium III	20.5	-	-	-	-	25.2	-	-	-	-	<0.5	mg/kg	NONE/NONE
Total Organic Carbon [#]	NDP	9.50	11.89	2.05	1.00	NDP	0.87	0.29	0.13	0.86	<0.02	%	TM21/PM24
Loss on Ignition #	NDP	6.0	9.6	3.8	1.8	NDP	4.1	1.6	<1.0	3.9	<1.0	%	TM22/PM0
рН#	8.50	8.39	8.53	8.53	8.39	8.64	8.47	8.66	9.08	8.55	<0.01	pH units	TM73/PM11
	0.105-	0.105		0.115-	c	0.105-	0.115-	0.105-	0.101-	0.115-			NONE
Mass of raw test portion	0.1063	0.1034	0.1111	0.1179	0.097	0.1088	0.1139	0.1082	0.1019	0.1138		kg	NONE/PM17
iviass of oried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		кg	NONE/PM17

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8507-02-19 Hickeys 43 Pargate Place Stephen Kealy 19/5621 Report : Solid

J E Sample No.	34-36	37-39								
Sample ID	BH101	BH101								
Depth	3.00	4.00					5			
COC No / miss							Please see attached notes for all abbreviations and acronyms			
Containers	VJT	VJT								
Sample Date	03/04/2019	03/04/2019								
Sample Type	Soil	Soil								
Batch Number	1	1							Method	
Date of Receipt	05/04/2019	05/04/2019					LOD/LOR	Units	No.	
Antimony	2	1					<1	mg/kg	TM30/PM15	
Arsenic [#]	13.9	8.4					<0.5	mg/kg	TM30/PM15	
Barium [#]	73	32					<1	mg/kg	TM30/PM15	
Cadmium #	1.3	0.2					<0.1	mg/kg	TM30/PM15	
Chromium [#]	85.4	90.4					<0.5	mg/kg	TM30/PM15	
Copper [#]	14	5					<1	mg/kg	TM30/PM15	
Lead [#]	19	7					<5	mg/kg	TM30/PM15	
Mercury#	<0.1	<0.1					<0.1	mg/kg	TM30/PM15	
Molybdenum "	5.8	6.8 7.6					<0.1	mg/kg	TM30/PM15	
Nickei	20.0	7.0					<0.7	mg/kg	TM30/PM15	
Zinc [#]	97	22					<5	ma/ka	TM30/PM15	
Antimony	-	-					<1	mg/kg	TM30/PM62	
Arsenic	-	-					<0.5	mg/kg	TM30/PM62	
Barium	-	-					<1	mg/kg	TM30/PM62	
Cadmium	-	-					<0.1	mg/kg	TM30/PM62	
Chromium	-	-					<0.5	mg/kg	TM30/PM62	
Copper	-	-					<1	mg/kg	TM30/PM62	
Lead	-	-					<5	mg/kg	TM30/PM62	
Mercury	-	-					<0.1	mg/kg	TM30/PM62	
Molybdenum	-	-					<0.1	mg/kg	TM30/PM62	
Selenium	-	-					<0.7	mg/kg	TM30/PM62	
Zinc	-	_					<5	ma/ka	TM30/PM62	
							-	5 5		
	1		1	1		1				
Client Name: Reference: Location: Contact: JE Job No.: Ground Investigations Ireland 8507-02-19 Hickeys 43 Pargate Place Stephen Kealy 19/5621 Report : Solid

J E Sample No.	34-36	37-39							
Sample ID	BH101	BH101							
Depth	3.00	4.00					Plaasa sa	o attached n	otos for all
COC No / misc							abbrevi	ations and a	cronyms
Containors	VIT	VIT							
Containers	VJI	VJI							
Sample Date	03/04/2019	03/04/2019							
Sample Type	Soil	Soil							
Batch Number	1	1							Method
Date of Receipt	05/04/2019	05/04/2019					LOD/LOR	Units	No.
PAH MS									
Naphthalene #	<0.04	<0.04					< 0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05					<0.05	mg/kg	TM4/PM8
Fluorene [#]	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Fluoranthene [#]	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Pyrene #	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06	<0.06					<0.06	mg/kg	TM4/PM8
Chrysene [#]	<0.02	<0.02					<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	<0.07					<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
PAH 17 Total	<0.64	<0.64					<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05					<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02					<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	90	78					<0	%	TM4/PM8
Mineral Oil (C10-C40)	<30	<30					<30	mg/kg	TM5/PM8/PM16
TPH CWG									
Aliphatics									T1 400 /D1 440
>C5-C6"	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>C6-C8"	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>00-010	<0.1	<0.1					<0.1	mg/kg	TM5/PM8/PM16
>010-012	<0.2	<0.2					<0.2	mg/kg	TM5/DM8/DM16
>012-018	<7	<7					<7	mg/kg	TM5/PM8/PM16
>C21-C35 [#]	<7	<7					<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	<19	<19					<19	ma/ka	TM5/TM38/PM8/PM12/PM1

Client Name: Reference: Location: Contact: JE Job No.: Ground Investigations Ireland 8507-02-19 Hickeys 43 Pargate Place Stephen Kealy 19/5621

Report : Solid

							-		
J E Sample No.	34-36	37-39							
Sample ID	BH101	BH101							
Depth	3.00	4.00					Please se	e attached n	otes for all
COC No / misc							abbrevi	ations and a	cronyms
Containers	V.I.T	V.IT							
Comula Dete	00/04/0040	00/04/0040							
Sample Date	03/04/2019	03/04/2019							
Sample Type	Soil	Soil							1
Batch Number	1	1					LOD/LOR	Units	Method
Date of Receipt	05/04/2019	05/04/2019							No.
TPH CWG									
Aromatics									
>C5-EC7 #	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC7-EC8*	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC8-EC10	<0.1	<0.1					<0.1	mg/kg	TM5/PM8/PM12
>EC12-EC16 [#]	<0.2	<0.2					<0.2	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	<7	<7					<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	<7	<7					<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 #	<19	<19					<19	mg/kg	TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35)	<38	<38					<38	mg/kg	TM5/TM38/PM8/PM12/PM16
MTBE [#]	<5	<5					<5	ug/kg	TM31/PM12
Benzene [#]	<5	<5					<5	ug/kg	TM31/PM12
Toluene [#]	<5	<5					<5	ug/kg	TM31/PM12
Ethylbenzene"	<5	<5					<5	ug/kg	TM31/PM12
m/p-Aylene	<5	<5					<5	ug/kg	TM31/PM12
0-Xylene	25	20					<5	ug/kg	110171 1012
PCB 28 [#]	<5	<5					<5	ug/kg	TM17/PM8
PCB 52 #	<5	<5					<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5					<5	ug/kg	TM17/PM8
PCB 118 [#]	<5	<5					<5	ug/kg	TM17/PM8
PCB 138 [#]	<5	<5					<5	ug/kg	TM17/PM8
PCB 153 [#]	<5	<5					<5	ug/kg	TM17/PM8
PCB 180 [#]	<5	<5					<5	ug/kg	TM17/PM8
Total 7 PCBs*	<35	<35					<35	ug/kg	TM17/PM8
Natural Moisture Content	27.2	5.5					<01	%	PM4/PM0
% Dry Matter 105°C	80.0	93.9					<0.1	%	NONE/PM4
Hexavalent Chromium #	<0.3	<0.3					<0.3	mg/kg	TM38/PM20
Chromium III	85.4	90.4					<0.5	mg/kg	NONE/NONE
Chromium III	-	-					<0.5	mg/kg	NONE/NONE
Total Organic Carbon [#]	0.45	0.12					<0.02	%	TM21/PM24
									T 100/D10
Loss on Ignition *	2.2	<1.0					<1.0	%	TM22/PM0
рп -	8.72	9.26					<0.01	pri units	1 WI7 3/PM11
Mass of raw test portion	0.112	0.0954						ka	NONE/PM17
Mass of dried test portion	0.09	0.09						kq	NONE/PM17
								Ű	

Ground Investigations Ireland 8507-02-19 Hickeys 43 Pargate Place Stephen Kealy 19/5621

Report : CEN 10:1 1 Batch

Sector Sector<	J E Sample No.	1-3	4-6	7-9	10-12	16-18	19-21	22-24	25-27	28-30	31-33	1		
book 150 </th <th>Sample ID</th> <th>WS103</th> <th>WS103</th> <th>WS103</th> <th>WS103</th> <th>WS101</th> <th>WS101</th> <th>WS101</th> <th>WS101</th> <th>WS101</th> <th>BH101</th> <th></th> <th></th> <th></th>	Sample ID	WS103	WS103	WS103	WS103	WS101	WS101	WS101	WS101	WS101	BH101			
COC No / net Coc Coc Coc Coc <th< th=""><th>Depth</th><th>0.60</th><th>1.60</th><th>2.60</th><th>3.50</th><th>0.50</th><th>1.00</th><th>2.00</th><th>3.00</th><th>4.00</th><th>2.00</th><th>Discourse</th><th></th><th></th></th<>	Depth	0.60	1.60	2.60	3.50	0.50	1.00	2.00	3.00	4.00	2.00	Discourse		
Normal Sector Var Backed hater (M) 0.02 </th <th>COC No / misc</th> <th></th> <th>abbrevi</th> <th>ations and a</th> <th>cronyms</th>	COC No / misc											abbrevi	ations and a	cronyms
Control Cont Cont <	Containara	V 1 T	VIT	VIT	VIT	VIT	VIT)/ IT	VIT	VIT) / I T	1		
Sample Date Scatzerial Scatzeria Scatzeria Scatzeri	Containers	VJI	VJI	VJI	VJI	VJI	VJI	VJI	VJI	VJI	VJI	1		
Same Prop Soil	Sample Date	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	1		
Beth Nume 1	Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Date decamp 050-0001 050-0001 050-0001 050-0001 050-0001 050-0001 050-0001 050-0001 050-0001 050-0001 050-0001 050-0001 050-0001 050-00	Batch Number	1	1	1	1	1	1	1	1	1	1		Unite	Method
Decessed Mainemy (M1)* -0.02	Date of Receipt	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	LOD/LOIX	Offita	No.
Discubed Advamic (A10)0.0020.0020.0020.0020.0020.003<	Dissolved Antimony (A10) #	<0.02	<0.02	<0.02	<0.02	0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Disclored Gamma (A10)*0.010.020.030.010.0030.0040.0050	Dissolved Arsenic (A10) #	<0.025	<0.025	<0.025	<0.025	<0.025	0.082	<0.025	<0.025	<0.025	0.035	<0.025	mg/kg	TM30/PM17
Discover	Dissolved Barium (A10) #	0.12	0.06	0.05	<0.03	0.17	0.04	0.05	0.04	<0.03	0.04	<0.03	mg/kg	TM30/PM17
Dissive Communit (A10)* -0.015	Dissolved Cadmium (A10) #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM30/PM17
Dissolved Coppen (A10)* -0.07 -0.07	Dissolved Chromium (A10) #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	mg/kg	TM30/PM17
Discover	Dissolved Copper (A10)#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM30/PM17
Discover dots	Dissolved Lead (A10) #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM30/PM17
Disable Mychodenum (A10) 0.12 0.04 0.02 0.03	Dissolved Mercury (A10) #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	TM30/PM17
Disabele Noles (Al0)* -0.02 -0.03 <td< th=""><th>Dissolved Molybdenum (A10) #</th><th>0.12</th><th>0.04</th><th><0.02</th><th>0.09</th><th>0.04</th><th>0.09</th><th>0.24</th><th>0.05</th><th><0.02</th><th>0.25</th><th><0.02</th><th>mg/kg</th><th>TM30/PM17</th></td<>	Dissolved Molybdenum (A10) #	0.12	0.04	<0.02	0.09	0.04	0.09	0.24	0.05	<0.02	0.25	<0.02	mg/kg	TM30/PM17
Disabute Selentum (A10)* -0.03 -0.	Dissolved Nickel (A10) #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Zure (A10 ⁴) -0.03 -0.0	Dissolved Selenium (A10) #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Total Phonols HPLC 0.005 0.	Dissolved Zinc (A10) [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Fluoride 8 -3	Total Phenols HPLC	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/l	TM26/PM0
Suphate as SO4* Image: solution of the second	Fluoride	8	<3	<3	<3	<3	4	<3	<3	<3	<3	<3	mg/kg	TM173/PM0
Suphate as SO4* 77 453 616 118 797 53 48 22 39 20 c5 mg/kg TM38/PM0 Choide* 4 72 66 72 62 72 62 72 63 48 22 39 20 c5 mg/kg TM38/PM0 Obsolved Organic Carbon c2 c2 <thc2< th="" th<=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thc2<>														
Choinde* 4 21 14 34 16 4 7 6 118 <3	Sulphate as SO4 #	77	453	616	118	797	53	48	22	39	20	<5	mg/kg	TM38/PM0
Dissolved Organic Carbon <	Chloride *	4	21	14	384	106	4	7	6	118	<3	<3	mg/kg	TM38/PM0
Dissolved Organic Carbon <200	Dissolved Organic Carbon	<2	<2	<2	2	<2	<2	2	<2	<2	3	<2	mg/l	TM60/PM0
Total Dissolved Solids" 1180 1750 2818 1609 2371 880 930 720 660 1070 <350	Dissolved Organic Carbon	<20	<20	<20	<20	<20	<20	20	<20	<20	30	<20	mg/kg	TM60/PM0
	Total Dissolved Solids "	1180	1750	2818	1609	2371	880	930	720	660	1070	<350	mg/kg	TM20/PM0

Ground Investigations Ireland 8507-02-19 Hickeys 43 Pargate Place Stephen Kealy 19/5621

Report : CEN 10:1 1 Batch

J E Sample No.	34-36	37-39					1		
Sample ID	BH101	BH101							
Depth	3.00	4.00					Diagon an	o ottoobod n	otoo for all
COC No / misc							abbrevi	ations and a	cronyms
Containers	VIT	VIT					1		
Containers	v 5 T	v 5 1							
Sample Date	03/04/2019	03/04/2019					1		
Sample Type	Soil	Soil					<u> </u>		1
Batch Number	1	1						Units	Method
Date of Receipt	05/04/2019	05/04/2019							No.
Dissolved Antimony (A10) #	<0.02	<0.02					<0.02	mg/kg	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	0.030					<0.025	mg/kg	TM30/PM17
Dissolved Barium (A10) #	0.05	<0.03					<0.03	mg/kg	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005					<0.005	mg/kg	TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015					<0.015	mg/kg	TM30/PM17
Dissolved Copper (A10) #	<0.07	<0.07					<0.07	mg/kg	TM30/PM17
Dissolved Lead (A10) #	<0.05	<0.05					<0.05	mg/kg	TM30/PM17
Dissolved Mercury (A10) #	<0.01	<0.01					<0.01	mg/kg	TM30/PM17
Dissolved Molybdenum (A10) *	0.04	<0.02					<0.02	mg/kg	TM30/PM17
Dissolved Nickel (A10) #	<0.02	<0.02					<0.02	mg/kg	TM30/PM17
Dissolved Selenium (A10) #	<0.03	<0.03					<0.03	mg/kg	TM30/PM17
Dissolved Zinc (A10) [#]	<0.03	<0.03					<0.03	mg/kg	TM30/PM17
Total Phenols HPLC	<0.05	<0.05					<0.05	mg/l	TM26/PM0
Fluoride	<3	<3					<3	mg/kg	TM173/PM0
Sulphate as SO4 #	24	9					<5	ma/ka	TM38/PM0
Chloride [#]	5	24					<3	ma/ka	TM38/PM0
								3 3	
Dissolved Organic Carbon	<2	<2					<2	mg/l	TM60/PM0
Dissolved Organic Carbon	<20	<20					<20	mg/kg	TM60/PM0
Total Dissolved Solids #	1070	530					<350	mg/kg	TM20/PM0

Client Name:Ground Investigations IrelandReference:8507-02-19Location:Hickeys 43 Pargate PlaceContact:Stephen KealyJE Job No.:19/5621

Report : EN12457_2

02000.000	10/0021															
J E Sample No.	1-3	4-6	7-9	10-12	16-18	19-21	22-24	25-27	28-30	31-33						
Sample ID	WS103	W\$103	W\$103	W\$103	WS101	W\$101	W\$101	W\$101	W\$101	BH101						
Depth	0.60	1.60	2.60	3.50	0.50	1.00	2.00	3.00	4.00	2.00				Please se	e attached n	otes for all
COC No / misc										1				abbrevi	ations and ar	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT						
Sample Date	03/04/2019	03/04/2010	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019	03/04/2019						
Cample Date	00/04/2013 Roil	Soil	Soil	Roil	00/04/2013 Roil	Coil	Soil	Soil	Soil	60/04/2013 Roil						
Sample Type	501	501	501	501	501	501	501	501	501	501						
Batch Number	1	1	1	1	1	1	1	1	1	1	Inert	Stable Non-	Hazardous	LOD LOR	Units	Method
Date of Receipt	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019	05/04/2019		reactive			-	INO.
Solid Waste Analysis																
Total Organic Carbon	NDP	9.50	11.89	2.05	1.00	NDP	0.87	0.29	0.13	0.86	3	5	6	<0.02	%	TM21/PM24
	<0.025**	<0.025**	<0.025*	<0.025	<0.025**	<0.025**	<0.025	<0.025	<0.025	<0.025	6	-	-	<0.025	mg/kg	TM31/PM12
Sum of 7 PCBs*	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	500	-	-	<0.035	mg/kg	TMT7/PM8
PAH Sum of 17	3.56	<0.64	1.11	<0.64	0.71	1.87	<0.64	<0.64	<0.64	<0.64	100	-	-	<0.64	ma/ka	TM4/PM8
					-										5 5	
CEN 10:1 Leachate																
Mass of raw test portion	0.1063	0.1034	0.1111	0.1179	0.097	0.1088	0.1139	0.1082	0.1019	0.1138	-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	84.3	87.2	81.4	76.5	93.3	83.1	79.4	83.4	88.2	79.1	-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.883	0.887	0.879	0.872	0.894	0.882	0.877	0.882	0.888	0.876	-	-	-		1	NONE/PM17
Eluate Volume	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	-	-	-		1	NONE/PM17
															1	
															L	

Exova Jones Environmental																
Client Name: Reference: Location: Contact:	Ground In 8507-02-1 Hickeys 4 Stephen k	ivestigatior 19 3 Pargate Kealy	ations Ireland ate Place					EN12457 _ 60g VOC ja	_ 2 r, J=250g gl	ass jar, T=p	lastic tub					
JE Job No.:	19/5621															
J E Sample No.	34-36	37-39														
Sample ID	BH101	BH101														
Depth	3.00	4.00												Please se	o attachod n	otos for all
COC No / misc														abbrevi	iations and a	cronyms
Containers	VJT	VJT														
Sample Date	03/04/2019	03/04/2019														
Sample Type	Soil	Soil														
Batch Number	1	1										Stable Non-				Method
Date of Receipt	05/04/2019	05/04/2019									Inert	reactive	Hazardous	LOD LOR	Units	No.
Solid Waste Analysis																
Total Organic Carbon #	0.45	0.12									3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025									6	-	-	<0.025	mg/kg	TM31/PM12
Mineral Oil	<30	<30									500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 17	<0.64	<0.64									100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
Mass of raw test portion	0.112	0.0954									-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	80.0	93.9									-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.877	0.894									-	-	-		I	NONE/PM17
Eluate Volume	0.8	0.85									-	-	-		I	NONE/PM17

Client Name:	Ground Investigations Ireland
Reference:	19/02/8507
Location:	Hickeys 43 Pargate Place
Contact:	Stephen Kealy

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

1 1100

Ryan Butterworth

Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
19/5621	1	WS103	0.60	2	09/04/2019	General Description (Bulk Analysis)	soil.stones
					09/04/2019	Asbestos Fibres	Fibre Bundles
					09/04/2019	Asbestos ACM	NAD
					09/04/2019	Asbestos Type	Chrysotile
					09/04/2019	Asbestos Level Screen	less than 0.1%
					17/04/2019	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					17/04/2019	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					17/04/2019	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					17/04/2019	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					17/04/2019	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
19/5621	1	WS103	1.60	5	09/04/2019	General Description (Bulk Analysis)	soil-stones
					09/04/2019	Asbestos Fibres	NAD
					09/04/2019	Asbestos ACM	NAD
					09/04/2019	Asbestos Type	NAD
					09/04/2019	Asbestos Level Screen	NAD
19/5621	1	WS103	2.60	8	09/04/2019	General Description (Bulk Analysis)	soil-stones
					09/04/2019	Asbestos Fibres	NAD
					09/04/2019	Asbestos ACM	NAD
					09/04/2019	Asbestos Type	NAD
					09/04/2019	Asbestos Level Screen	NAD
19/5621	1	WS103	3.50	11	09/04/2019	General Description (Bulk Analysis)	soil.stones
					09/04/2019	Asbestos Fibres	NAD
					09/04/2019	Asbestos ACM	NAD
					09/04/2019	Asbestos Type	NAD
					09/04/2019	Asbestos Level Screen	NAD
19/5621	1	WS101	0.50	17	09/04/2019	General Description (Bulk Analysis)	soil.stones
					09/04/2019	Asbestos Fibres	NAD
					09/04/2019	Asbestos ACM	NAD
					09/04/2019	Asbestos Type	NAD
					09/04/2019	Asbestos Level Screen	NAD
19/5621	1	WS101	1.00	20	09/04/2019	General Description (Bulk Analysis)	soil.stones
					09/04/2019	Asbestos Fibres	Fibre Bundles
					09/04/2019	Asbestos ACM	NAD
					09/04/2019	Asbestos Type	Chrysotile

Client N Referer Locatio Contac	Name: nce: on: et:		Ground I 19/02/85 Hickeys Stephen	nvestigat 07 43 Parga Kealy	ions Ireland te Place					
J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result			
19/5621	1	WS101	1.00	20	09/04/2019	Asbestos Level Screen	less than 0.1%			
10/5621	1	WS101	2.00	23	09/04/2019	General Description (Bulk Analysis)	soil/stones			
19/3021		WOTOT	2.00	23	09/04/2019	Ashestos Eibres	NAD			
					09/04/2019	Asbestos ACM	NAD			
					09/04/2019	Asbestos Type	NAD			
					09/04/2019	Asbestos Level Screen	NAD			
10/5001		14/04/04								
19/5621	1	WS101	3.00	26	09/04/2019	General Description (Bulk Analysis)	soil/stones			
					09/04/2019	Asbestos Fibres	NAD			
					09/04/2019	Asbestos ACM	NAD			
					09/04/2019	Asbestos Type				
					09/04/2019	Asbestos Level Screen	NAD			
19/5621	1	WS101	4.00	29	09/04/2019	General Description (Bulk Analysis)	soil/stones			
					09/04/2019	Asbestos Fibres	NAD			
					09/04/2019	Asbestos ACM	NAD			
					09/04/2019	Asbestos Type	NAD			
					09/04/2019	Asbestos Level Screen	NAD			
19/5621	1	BH101	2.00	32	09/04/2019	General Description (Bulk Analysis)	soil.stones			
					09/04/2019	Asbestos Fibres	NAD			
					09/04/2019	Asbestos ACM	NAD			
					09/04/2019	Asbestos Type	NAD			
					09/04/2019	Asbestos Level Screen	NAD			
10/5001		DUI404			00/01/0010					
19/5621	1	BH101	3.00	35	09/04/2019	General Description (Bulk Analysis)	soil.stones			
					09/04/2019	Asbestos Fibres	NAD			
					09/04/2019		NAD			
					09/04/2019	Asbestos Level Screen	NAD			
					00/04/2010					
19/5621	1	BH101	4 00	38	09/04/2019	General Description (Bulk Analysis)	soil stones			
					09/04/2019	Asbestos Fibres	NAD			
					09/04/2019	Asbestos ACM	NAD			
					09/04/2019	Asbestos Type	NAD			
					09/04/2019	Asbestos Level Screen	NAD			

Matrix : Solid

Client Name:	Ground Investigations Ireland
Reference:	8507-02-19
Location:	Hickeys 43 Pargate Place
Contact:	Stephen Kealy

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Method No.	NDP Reason
19/5621	1	WS103	0.60	1-3	NONE/NONE	Asbestos detected in sample
19/5621	1	WS103	0.60	1-3	TM21/PM24	Asbestos detected in sample
19/5621	1	WS103	0.60	1-3	TM22/PM0	Asbestos detected in sample
19/5621	1	WS101	1.00	19-21	NONE/NONE	Asbestos detected in sample
19/5621	1	WS101	1.00	19-21	TM21/PM24	Asbestos detected in sample
19/5621	1	WS101	1.00	19-21	TM22/PM0	Asbestos detected in sample

Client Name:Ground Investigations IrelandReference:8507-02-19Location:Hickeys 43 Pargate PlaceContact:Stephen Kealy

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
			•		No deviating sample report results for job 19/5621	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 19/5621

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Appendix - Methods used for WAC (2003/33/EC)

JE Job No.:

19/5621

Leachate tests	
101/ka: 4mm	I.S. EN 12457-2:2002 Specified particle size; water added to L/S ratio; capped; agitated for 24 ± 0.5 hours; eluate settled and
100/kg, 411111	filtered over 0.45 µm membrane filter.
Eluate analysis	
As	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ва	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cd	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cr total	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cu	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Hg	I.S. EN 13370 rec. EN 1483 (CVAAS)
Мо	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ni	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Pb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Sb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Se	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Zn	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Chloride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Fluoride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Sulphate	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Phenol index	I.S. EN 13370 rec. ISO 6439 (4-Aminoantipyrine spectrometic methods after distillation)* (BY HPLC - Jones Env)
DOC	I.S. EN 1484
TDS	I.S. EN 15216
Compositional	analysis
TOC	I.S. EN 13137 Method B: carbonates removed with acid; TOC by combustion.
BTEX	GC-FID
PCB7**	I.S. EN 15308 analysis by GC-ECD.
Mineral oil	I.S. EN 14039 C10 to C40 analysis by GC-FID.
PAH17***	I.S. EN 15527 PAH17 analysis by GC-MS
Metals	I.S. EN 13657 - Aqua regia digestion: EN ISO 11885 (ICP-OES)
Other	
	I.S. EN 14346 sample is dried to a constant mass in an oven at 105 ± 3 °C: Method B Water content by direct Karl-Fischer
Dry matter	titration and either volumetric or coulometric detection.
LOI	I.S. EN 15169 Difference in mass after heating in a furnace up to 550 ± 25 °C.
ANC	CEN/TS 15364 Determined by amouns of acid or base needed to cover the pH range
Notes: *If not suitable d	ue to LOD, precision, etc., any other suitable method can be used, e.g. AFS, ICP-MS

***Naphthalene, Acenaphthylene, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Benzo(a)pyrene, Chrysene, Coronene, Dibenzo(a,h)anthracene, Fluorene, Fluoranthene, Indeno(1,2,3-c,d)pyrene, Phenanthrene and Pyrene.

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C- 440C)	PM0	No preparation is required.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM62	Acid digestion of as received solid samples using Aqua Regia refluxed at 112.5 $^\circ\text{C}.$			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060, APHA Standard Methods for Examination of Water and Wastewater 5310B, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
ТМ73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM131	Quantification of Asbestos Fibres and ACM, based on HSG248 and SCA method.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	NONE	No Method Code			AR	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

Ground Investigations Ireland Catherinestown House

Hazelhatch Road

Newcastle Co. Dublin Ireland

Exova Jones Environmental

Registered Office: Exova Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN. Reg No. 11371415

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Stephen Kealy
1st May, 2019
8507-02-19
Test Report 19/5725 Batch 1
Hickeys 43 Pargate Place
8th April, 2019
Final report
1

Five samples were received for analysis on 8th April, 2019 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Where Waste Acceptance Criteria Suite (EC Decision of 19 December 2002 (2003/33/EC)) has been requested, all analyses have been performed using the relevant EN methods where they exist.

Compiled By:

illaumed.

Lucas Halliwell Project Co-ordinator

Client Name: Reference: Location: Contact: JE Job No.: Ground Investigations Ireland 8507-02-19 Hickeys 43 Pargate Place Stephen Kealy 19/5725 Report : Solid

							-		
J E Sample No.	7-9	10-12					Í		
Sample ID	WS105A	WS105A							
Depth	0.50	1.30					Please se	e attached n	otes for all
COC No / misc							abbrevi	ations and ad	cronyms
Containers	VJT	VJT							
Sample Date	04/04/2019	04/04/2019							
Samula Tura	0-11	0-1							
Sample Type	501	501					<u> </u>		1
Batch Number	1	1					LOD/LOR	Units	Method
Date of Receipt	08/04/2019	08/04/2019							INO.
Antimony	611 _{AB}	30 _{AA}					<1	mg/kg	TM30/PM15
Arsenic [#]	37.3	16.5					<0.5	mg/kg	TM30/PM15
Barium #	585	115					<1	mg/kg	TM30/PM15
Cadmium [#]	1.5	0.8					<0.1	mg/kg	TM30/PM15
Chromium #	33.5	48.2					<0.5	mg/kg	TM30/PM15
Copper *	186	321 _{AA}					<1	mg/kg	TM30/PM15
Lead"	4755 _{AA}	165					<5	mg/kg	TM30/PM15
Mercury"	<0.1	<0.1					<0.1	mg/kg	TM30/PM15
Molybdenum "	5.7	2.7					<0.1	mg/kg	TM30/PM15
	38.8	27.1					<0.7	mg/kg	TM30/PM15
	275	2					<1	mg/kg	TM30/PM15
Zinc	215	200					<5	ilig/kg	TWISU/FIVITS
PAH MS									
Nanhthalana [#]	<0.04	1 72					<0.04	ma/ka	TM4/PM8
Acenaphthylene	0.06	0.28					<0.03	ma/ka	TM4/PM8
Acenaphthene #	<0.05	3.26					<0.05	ma/ka	TM4/PM8
Fluorene [#]	< 0.04	4.90					< 0.04	ma/ka	TM4/PM8
Phenanthrene [#]	0.34	27.35**					<0.03	mg/kg	TM4/PM8
Anthracene [#]	0.08	11.28					<0.04	mg/kg	TM4/PM8
Fluoranthene#	0.54	23.51**					<0.03	mg/kg	TM4/PM8
Pyrene #	0.56	19.64					<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	0.41	11.32					<0.06	mg/kg	TM4/PM8
Chrysene [#]	0.41	10.50					<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	0.83	15.19					<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	0.35	8.97					<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #	0.30	4.94					<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	0.08	1.46					<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	0.29	4.58					<0.04	mg/kg	TM4/PM8
Coronene	0.08	0.83					<0.04	mg/kg	TM4/PM8
PAH 17 Total	4.33	149.73					<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.60	10.94					<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.23	4.25					<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	97	93					<0	%	TM4/PM8
Mineral Oil (C10-C40)	75	937					<30	mg/kg	TM5/PM8/PM16
	1	1	•	•				1	1

Client Name: Reference: Location: Contact: JE Job No.: Ground Investigations Ireland 8507-02-19 Hickeys 43 Pargate Place Stephen Kealy 19/5725 Report : Solid

							-		
J E Sample No.	7-9	10-12							
Sample ID	WS105A	WS105A							
Depth	0.50	1.30					Please se	e attached r	notes for all
COC No / misc							abbrevi	ations and a	cronyms
Containers	VIT	VIT							
Containers	v 5 1	v 5 1							
Sample Date	04/04/2019	04/04/2019							
Sample Type	Soil	Soil						1	-
Batch Number	1	1					LOD/LOR	Units	Method
Date of Receipt	08/04/2019	08/04/2019					LODILON	onno	No.
TPH CWG									
Aliphatics									
>C5-C6 [#]	<0.1 ^{SV}	<0.1 ^{SV}					<0.1	mg/kg	TM36/PM12
>C6-C8 *	<0.1 ^{SV}	<0.1 ^{5V}					<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	0.2					<0.1	mg/kg	TM36/PM12
>C10-C12"	<0.2	22.6					<0.2	mg/kg	TM5/PM8/PM16
>C12-C16"	<4	80					<4	mg/kg	TM5/PM8/PM16
>016-021*	<1	91					</td <td>mg/kg</td> <td>TME/DM9/DM10</td>	mg/kg	TME/DM9/DM10
>021-035	75	926					<10	mg/kg	TM5/TM36/PM8/PM12/PM1
Aromatics	13	520					<13	ilig/kg	
>C5-EC7#	<0.1 ^{SV}	<0 1 ^{SV}					<0.1	ma/ka	TM36/PM12
>EC7-EC8#	<0.1 ^{SV}	<0.1 ^{SV}					<0.1	mg/kg	TM36/PM12
>EC8-EC10 [#]	<0.1 ^{SV}	<0.1 ^{SV}					<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	2.4					<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 [#]	<4	29					<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	<7	111					<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	99	858					<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 #	99	1000					<19	mg/kg	TM5/TM38/PM8/PM12/PM1
Total aliphatics and aromatics(C5-35)	174	1926					<38	mg/kg	TM5/TM38/PM8/PM12/PM10
MTBE#	<5 ^{\$V}	<5 ^{SV}					<5	ug/kg	TM31/PM12
Benzene [#]	<5 ^{SV}	<5 ^{SV}					<5	ug/kg	TM31/PM12
Toluene [#]	<5 ^{SV}	<5 ^{\$V}					<5	ug/kg	TM31/PM12
Ethylbenzene #	<5 ^{SV}	<5 ^{SV}					<5	ug/kg	TM31/PM12
m/p-Xylene #	<5 ^{SV}	<5 ^{SV}					<5	ug/kg	TM31/PM12
o-Xylene *	<5	<5					<5	ug/kg	TM31/PM12
PCB 28 #	<5	<5					<5	ug/kg	TM17/PM8
PCB 52#	<5	<5					<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5					<5	ug/kg	TM17/PM8
PCB 118 [#]	<5	<5					<5	ug/kg	TM17/PM8
PCB 138 [#]	<5	<5					<5	ug/kg	TM17/PM8
PCB 153 #	<5	<5					<5	ug/kg	TM17/PM8
PCB 180 [#]	<5	<5					<5	ug/kg	TM17/PM8
Total 7 PCBs*	<35	<35					<35	ug/kg	TM17/PM8
Natural Moisture Content	21.0	14.8					<0.1	%	PM4/PM0
% Dry Matter 105°C	84.4	84.3					<0.1	%	NONE/PM4
Hexavalent Chromium [#]	<0.3	<0.3					<0.3	mg/kg	TM38/PM20
Chromium III	33.5	48.2					<0.5	mg/kg	NONE/NONE
Total Organic Carbon #	38.44	6.48					<0.02	%	TM21/PM24

Client Name:									
Reference:									
Location:									
Contact:									
JE Job No.:									

Ground Investigations Ireland 8507-02-19 Hickeys 43 Pargate Place Stephen Kealy 19/5725 Report : Solid

J E Sample No.	7-9	10-12							
Sample ID	WS105A	WS105A							
Depth	0.50	1.30							
COC No / misc							Please se abbrevia	e attached ne ations and ac	otes for all cronyms
Containara	VIT	VIT							
Containers	VJI	VJI							
Sample Date	04/04/2019	04/04/2019							
Sample Type	Soil	Soil							
Batch Number	1	1					LOD/LOR	Units	Method
Date of Receipt	08/04/2019	08/04/2019							No.
Loss on Ignition [#]	7.8	<1.0					<1.0	%	TM22/PM0
pH [#]	8.36	8.41					<0.01	pH units	TM73/PM11
Mass of raw test portion	0 1064	0 1064						ka	NONE/PM17
Mass of dried test portion	0.09	0.09						kg	NONE/PM17
								0	

Client Name: Reference: Location: Contact: JE Job No.: Ground Investigations Ireland 8507-02-19 Hickeys 43 Pargate Place Stephen Kealy 19/5725

Report : CEN 10:1 1 Batch

J E Sample No.	7-9	10-12							
Sample ID	WS105A	WS105A							
Depth	0.50	1.30					Diagon of	a attached n	atoo for all
COC No / misc							abbrevi	ations and a	cronyms
Containers	VIT	VIT							
Comula Deta	0.4/0.4/004.0	0.4/0.4/004.0							
Sample Date	04/04/2019	04/04/2019							
Sample Type	Soil	Soil							1
Batch Number	1	1					LOD/LOR	Units	Method
Date of Receipt	08/04/2019	08/04/2019							No.
Dissolved Antimony (A10) #	6.51 _{AA}	0.59					<0.02	mg/kg	TM30/PM17
Dissolved Arsenic (A10) #	<0.025	0.043					<0.025	mg/kg	TM30/PM17
Dissolved Barium (A10) #	0.04	0.09					<0.03	mg/kg	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005					<0.005	mg/kg	TM30/PM17
Dissolved Chromium (A10)*	<0.015	<0.015					<0.015	mg/kg	TM30/PM17
Dissolved Copper (A10) *	<0.07	0.12					<0.07	mg/kg	TM30/PM17
Dissolved Lead (A10) "	0.06	<0.05					<0.05	mg/kg	TM30/PM17
Dissolved Melvbdopum (A10)	<0.01	0.17					<0.01	mg/kg	TM30/PM17
Dissolved Nickel (A10) #	<0.03	<0.02					<0.02	mg/kg	TM30/PM17
Dissolved Selenium (A10) #	<0.02	<0.02					<0.02	ma/ka	TM30/PM17
Dissolved Zinc (A10) #	< 0.03	<0.03					< 0.03	mg/kg	TM30/PM17
Total Phenols HPLC	<0.05	<0.05					<0.05	mg/l	TM26/PM0
Fluoride	<3	5					<3	mg/kg	TM173/PM0
Sulphate as SO4 #	6	267					<5	mg/kg	TM38/PM0
Chloride [#]	<3	31					<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	<2	4					<2	mg/l	TM60/PM0
Dissolved Organic Carbon	<20	40					<20	mg/kg	TM60/PM0
Total Dissolved Solids #	440	1360					<350	mg/kg	TM20/PM0

Exova Jones Environmental															
Client Name: Reference: Location: Contact:	Ground In 8507-02-1 Hickeys 4 Stephen F	ivestigatior 19 3 Pargate Kealy	ns Ireland Place			Report : Solids: V=	EN12457 _	_ 2 r, J=250g gla	ass jar, T=p	lastic tub					
JE Job No.:	19/5725														
J E Sample No.	7-9	10-12													
Sample ID	W\$105A	W\$105A													
Depth	0.50	1.30											_		
COC No / misc													Please se abbrevi	e attached n ations and a	otes for all cronyms
Containers	VJT	VJT													
Sample Date	04/04/2019	04/04/2019													
Sample Type	Soil	Soil													
Batch Number	1	1									Stable Non-				Method
Date of Receipt	08/04/2019	08/04/2019								Inert	reactive	Hazardous	LOD LOR	Units	No.
Solid Waste Analysis															
Total Organic Carbon #	38.44	6.48								3	5	6	<0.02	%	TM21/PM24
Sum of BIEX	<0.025*	<0.025*								6	-	-	<0.025	mg/kg	TM31/PM12 TM17/PM8
Mineral Oil	75	937								500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 17	4.33	149.73								100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate															
Mass of raw test portion	0.1064	0.1064								-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	84.4	84.3								-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.883	0.883								-	-	-		I	NONE/PM17
Eluate Volume	0.85	0.8								-	-	-		I	NONE/PM17

Client Name:	Ground Investigations Ireland
Reference:	19/02/8507
Location:	Hickeys 43 Pargate Place
Contact:	Stephen Kealy

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

Ryan Butterworth Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
19/5725	1	WS105A	0.50	8	24/04/2019	General Description (Bulk Analysis)	soil-stones
					24/04/2019	Asbestos Fibres	NAD
					24/04/2019	Asbestos ACM	NAD
					24/04/2019	Asbestos Type	NAD
					24/04/2019	Asbestos Level Screen	NAD
19/5725	1	WS105A	1.30	11	18/04/2019	General Description (Bulk Analysis)	soil.stones
					18/04/2019	Asbestos Fibres	NAD
					18/04/2019	Asbestos ACM	NAD
					18/04/2019	Asbestos Type	NAD
					18/04/2019	Asbestos Level Screen	NAD

Client Name:Ground Investigations IrelandReference:8507-02-19Location:Hickeys 43 Pargate PlaceContact:Stephen Kealy

Notification of Deviating Samples

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
19/5725	1	WS105A	0.50	7-9	EPH, GRO, PAH, PCB	Sample holding time exceeded
19/5725	1	WS105A	1.30	10-12	EPH, GRO, PAH, PCB	Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 19/5725

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution
AB	x50 Dilution

Appendix - Methods used for WAC (2003/33/EC)

JE Job No.: 19/5725

Leachate tests	
10l/ka [.] 4mm	I.S. EN 12457-2:2002 Specified particle size; water added to L/S ratio; capped; agitated for 24 ± 0.5 hours; eluate settled and
rowig, min	filtered over 0.45 µm membrane filter.
Eluate analysis	
As	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ва	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cd	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cr total	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cu	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Hg	I.S. EN 13370 rec. EN 1483 (CVAAS)
Мо	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ni	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Pb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Sb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Se	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Zn	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Chloride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Fluoride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Sulphate	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Phenol index	I.S. EN 13370 rec. ISO 6439 (4-Aminoantipyrine spectrometic methods after distillation)* (BY HPLC - Jones Env)
DOC	I.S. EN 1484
TDS	I.S. EN 15216
Compositional	analysis
TOC	I.S. EN 13137 Method B: carbonates removed with acid; TOC by combustion.
BTEX	GC-FID
PCB7**	I.S. EN 15308 analysis by GC-ECD.
Mineral oil	I.S. EN 14039 C10 to C40 analysis by GC-FID.
PAH17***	I.S. EN 15527 PAH17 analysis by GC-MS
Metals	I.S. EN 13657 - Aqua regia digestion: EN ISO 11885 (ICP-OES)
Other	
	IS EN 14246, sample is dried to a constant mass in an over at 105 + 2 °C'. Method R Water content by direct Kerl Eicober
Dry matter	1.3. Et 1999 Sample is uned to a constant mass in an over at 105 ± 5 °C, Method & Water content by direct Rall-Fischer- titration and either volumetric or coulometric detection
bry matter	
LOI	I.S. EN 15169 Difference in mass after heating in a furnace up to 550 ± 25 °C.
ANC	CEN/TS 15364 Determined by amouns of acid or base needed to cover the pH range
Notes:	
*الأسط من شعاما م	

*If not suitable due to LOD, precision, etc., any other suitable method can be used, e.g. AFS, ICP-MS **PCB-28, PCB-52, PCB-101, PCB-118, PCB-138, PCB-153 and PCB-180

***Naphthalene, Acenaphthylene, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Benzo(a)pyrene, Chrysene, Coronene, Dibenzo(a,h)anthracene, Fluorene, Fluoranthene, Indeno(1,2,3-c,d)pyrene, Phenanthrene and Pyrene.

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C-440C)	PM0	No preparation is required.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060, APHA Standard Methods for Examination of Water and Wastewater 5310B, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

Ground Investigations Ireland Catherinestown House

Hazelhatch Road

Newcastle Co. Dublin Ireland

Exova Jones Environmental

Registered Office: Exova Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN. Reg No. 11371415

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Stephen Kealy
Date :	9th May, 2019
Your reference :	8507-02-19
Our reference :	Test Report 19/5884 Batch 1
Location :	
Date samples received :	10th April, 2019
Status :	Final report
Issue :	1

Sixteen samples were received for analysis on 10th April, 2019 of which fourteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Where Waste Acceptance Criteria Suite (EC Decision of 19 December 2002 (2003/33/EC)) has been requested, all analyses have been performed using the relevant EN methods where they exist.

Compiled By:

Phil Sommerton BSc Project Manager

Client Name:
Reference:
Location:
Contact:

Ground Investigations Ireland 8507-02-19

Stephen Kealy

Report : Solid

JE Job No.:	19/5884												
J E Sample No.	1-3	4-6	7-9	12-14	15-17	18-20	21-23	27-29	30-32	33-35			
Sample ID	WS109	WS109	WS109	WS110	WS110	WS110	WS110	WS112	WS112	WS112			
Depth	0.90	1.90	2.90	0.90	1.80	2.90	3.50	0.70	1.70	2.70	Please se	e attached n	otes for all
COC No / misc											abbievi	alions and a	lonyms
Containers	VJT												
Sample Date	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	LOD/LOR	Units	No.
Antimony	2	2	2	4	2	2	2	2	2	2	<1	mg/kg	TM30/PM15
Arsenic [#]	11.3	8.7	9.6	23.9	10.2	15.6	18.6	17.8	15.0	14.4	<0.5	mg/kg	TM30/PM15
Barium [#]	91	39	51	341	70	74	105	79	74	86	<1	mg/kg	TM30/PM15
Cadmium [#]	2.2	2.0	1.3	0.4	1.9	1.4	2.2	1.7	1.2	0.8	<0.1	mg/kg	TM30/PM15
Chromium #	30.9	33.5	30.9	31.6	26.0	36.4	40.7	34.7	38.6	32.1	<0.5	mg/kg	TM30/PM15
Copper [#]	32	25	22	84	29	27	34	37	55	39	<1	mg/kg	TM30/PM15
Lead [#]	21	21	36	2229	32	61	47	67	83	67	<5	mg/kg	TM30/PM15
Mercury#	<0.1	<0.1	0.3	0.1	<0.1	<0.1	<0.1	0.4	0.1	<0.1	<0.1	mg/kg	TM30/PM15
Molybdenum *	3.5	3.8	2.6	5.7	3.2	2.6	2.7	3.4	3.1	2.9	<0.1	mg/kg	TM30/PM15
Nickel"	40.7	27.2	26.8	27.8	36.1	33.1	47.0	39.2	30.6	35.6	<0.7	mg/kg	TM30/PM15
Zipe#	89	72	76	79	90	109	157	113	117	85	<5	ma/ka	TM30/PM15
ZIIIC	00	12	10	10	50	100	107	110		00		ing/ig	111100/1 11110
PAH MS													
Naphthalene #	<0.04	<0.04	<0.04	0.06	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	<0.03	<0.03	<0.03	0.28	<0.03	0.05	0.08	0.06	0.10	0.10	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene [#]	<0.03	<0.03	<0.03	0.15	<0.03	<0.03	0.05	<0.03	<0.03	0.05	<0.03	mg/kg	TM4/PM8
Pyrene *	<0.03	<0.03	<0.03	0.15	<0.03	<0.03	<0.03	<0.03	<0.03	0.06	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene "	<0.06	<0.06	<0.06	0.17	<0.06	<0.06	<0.06	<0.06	<0.06	0.10	<0.06	mg/kg	
Chrysene Benzo(bk)fluoranthene [#]	<0.02	<0.02	<0.02	0.20	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	ma/ka	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04	<0.04	0.07	<0.04	<0.04	<0.04	<0.04	<0.04	0.05	<0.04	ma/ka	TM4/PM8
Indeno(123cd)pyrene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.05	< 0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	<0.04	<0.04	<0.04	0.06	<0.04	<0.04	<0.04	<0.04	<0.04	0.06	<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
PAH 17 Total	<0.64	<0.64	<0.64	1.33	<0.64	<0.64	<0.64	<0.64	<0.64	0.72	<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	<0.05	0.14	<0.05	<0.05	<0.05	<0.05	<0.05	0.12	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	0.05	<0.02	<0.02	<0.02	<0.02	<0.02	0.04	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	100	99	99	99	96	95	95	95	93	95	<0	%	TM4/PM8
Mineral Oil (C10-C40)	<30	<30	<30	<30	<30	<30	57	<30	<30	<30	<30	mg/kg	TM5/PM8/PM16

Client Name: Reference:	Ground Investigations Ireland 8507-02-19							Report : Solid							
Location: Contact: JE Job No.:	Stephen k 19/5884	Kealy					Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub								
J E Sample No.	1-3	4-6	7-9	12-14	15-17	18-20	21-23	27-29	30-32	33-35					
Sample ID	WS109	WS109	WS109	WS110	WS110	WS110	WS110	W\$112	W\$112	W\$112					
Depth	0.90	1.90	2.90	0.90	1.80	2.90	3.50	0.70	1.70	2.70	Please see attached notes for all				
COC No / misc											abbrevia	ations and ad	ronyms		
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1	1	1	1	1		11.20	Method		
Date of Receipt	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	LOD/LOR	Units	No.		
TPH CWG															
Aliphatics			SV	SV		SV	SV								
>C5-C6 #	<0.1	<0.1	<0.1 ^{3V}	<0.1 ^{3V}	<0.1	<0.1 ^{3V}	<0.1 ^{3V}	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12		
>C6-C8"	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12		
>C10-C12 [#]	<0.2	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16		
>C12-C16#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16		
>C16-C21 #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16		
>C21-C35#	<7	<7	<7	<7	<7	<7	57	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16		
Total aliphatics C5-35 Aromatics	<19	<19	<19	<19	<19	<19	57	<19	<19	<19	<19	mg/kg	TM5/TM36/PM8/PM12/PM16		
>C5-EC7#	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12		
>EC7-EC8*	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12		
>EC8-EC10 [#]	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12		
>EC10-EC12#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16		
>EC12-EC16"	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16		
>EC16-EC21	<7	<7	<7	<7	<7	<7	<7 80	<7	</th <th><7</th> <th><7</th> <th>mg/kg</th> <th>TM5/PM8/PM16</th>	<7	<7	mg/kg	TM5/PM8/PM16		
Total aromatics C5-35 [#]	<19	<19	<19	<19	<19	<19	80	<19	79	<19	<19	ma/ka	TM5/TM38/PM8/PM12/PM16		
Total aliphatics and aromatics(C5-35)	<38	<38	<38	<38	<38	<38	137	<38	79	<38	<38	mg/kg	TM5/TM36/PM8/PM12/PM16		
MTBE #	<5	<5	<5 ^{\$V}	<5 ^{\$V}	<5	<5 ^{\$V}	<5 ^{\$V}	<5	<5	<5	<5	ug/kg	TM31/PM12		
Benzene [#]	<5	<5	<5 ^{SV}	<5 ^{SV}	<5	<5 ^{SV}	<5 ^{SV}	<5	<5	<5	<5	ug/kg	TM31/PM12		
Toluene [#]	<5	<5	<5 ^{\$V}	<5 ^{\$V}	<5	<5 ^{\$V}	<5 ^{\$V}	<5	<5	<5	<5	ug/kg	TM31/PM12		
Ethylbenzene#	<5	<5	<5 ^{SV}	<5 ^{SV}	<5	<5 ^{SV}	<5 ^{SV}	<5	10	<5	<5	ug/kg	TM31/PM12		
m/p-Xylene #	<5	<5	<5 ³⁰	<5 ³⁰	<5	<5 ³⁰	<5 ³⁰	<5	10	<5	<5	ug/kg	TM31/PM12		
o-Xylene "	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	10131/PM12		
PCB 28 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 52#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 101"	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 118	<0	<0	<5	<0	<5	<0	<5	<5	<5	<0	<0	ug/kg	TM17/PM8		
PCB 138	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 180 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
Total 7 PCBs [#]	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8		
Natural Moisture Content	20.5	15.2	14.3	18.7	15.5	29.4	53.6	23.6	21.9	24.3	<0.1	%	PM4/PM0		
% Dry Matter 105°C	84.3	88.4	85.3	84.6	87.8	83.3	66.8	84.4	84.5	81.3	<0.1	%	NONE/PM4		
Hexavalent Chromium [#]	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20		
Chromium III	30.9	33.5	30.9	31.6	26.0	36.4	40.7	34.7	38.6	32.1	<0.5	mg/kg	NONE/NONE		
Total Organic Carbon [#]	0.68	0.47	1.03	12.36	0.57	1.27	3.36	2.10	2.08	2.22	<0.02	%	TM21/PM24		

Client Name: Reference:	Ground Investigations Ireland 8507-02-19							Report : Solid						
Location: Contact: JE Job No.:	Stephen k 19/5884	Kealy					Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub			
J E Sample No.	1-3	4-6	7-9	12-14	15-17	18-20	21-23	27-29	30-32	33-35				
Sample ID	WS109	WS109	WS109	WS110	WS110	WS110	WS110	WS112	WS112	WS112				
Depth	0.90	1.90	2.90	0.90	1.80	2.90	3.50	0.70	1.70	2.70	Please se	e attached n	otes for all	
COC No / misc											abbrevi	ations and a	cronyms	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019				
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method	
Date of Receipt	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019			INU.	
Loss on Ignition" pH [#]	2.7 8.47	2.0 8.61	2.8 8.67	9.2 8.45	2.1 8.68	3.9 8.40	9.6 7.77	4.2 8.34	4.0 8.84	4.1 9.59	<1.0 <0.01	% pH units	TM22/PM0 TM73/PM11	
F												•		
Mass of raw test portion	0.1073	0.1021	0.105	0.106	0.103	0.1075	0.1348	0.1066	0.1063	0.1102		kg	NONE/PM17	
mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		кд	NONE/PWIT	

Client Name: Reference:	Ground Investigations Ireland 8507-02-19							Report : Solid							
Location:							Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub				
Contact:	Stephen k	Kealy													
JE Job No.:	19/5884														
J E Sample No.	36-38	39-41	42-44	45-47											
Sample ID	WS102A	WS102A	WS102A	WS102A											
Depth	0.90	1.50	2.50	3.50							Please se	e attached n	otes for all		
COC No / misc											abbrevi	ations and a	cronyms		
Containers	VJT	VJT	VJT	VJT											
Sample Date	07/04/2019	07/04/2019	07/04/2019	07/04/2019											
Sample Type	Soil	Soil	Soil	Soil											
Batch Number	1	1	1	1									Mathod		
Date of Receipt	10/04/2019	10/04/2019	10/04/2019	10/04/2019							LOD/LOR	Units	No.		
Antimony	11	4	3	3							<1	mg/kg	TM30/PM15		
Arsenic [#]	23.4	19.7	18.5	9.0							<0.5	mg/kg	TM30/PM15		
Barium [#]	226	288	86	70							<1	mg/kg	TM30/PM15		
Cadmium [#]	0.3	<0.1	1.7	0.6							<0.1	mg/kg	TM30/PM15		
Chromium [#]	59.3	43.7	47.2	53.3							<0.5	mg/kg	TM30/PM15		
Copper [#]	142	181	18	6							<1	mg/kg	TM30/PM15		
Lead [#]	114	179	29	11							<5	mg/kg	TM30/PM15		
Mercury*	<0.1	0.2	<0.1	<0.1							<0.1	mg/kg	TM30/PM15		
Molybdenum "	10.5	9.5	3.0	4.4							<0.1	mg/kg	TM30/PM15		
NICKEI	2	104.9	34.0	14.2							<0.7	mg/kg	TM20/PM15		
Selenium Zino#	207	4	128	33							<1	mg/kg	TM30/PM15		
Zing	207	107	120									ilig/kg	11000/110113		
PAH MS															
Naphthalene #	0.55	0.10	<0.04	<0.04							<0.04	mg/kg	TM4/PM8		
Acenaphthylene	0.06	<0.03	<0.03	<0.03							<0.03	mg/kg	TM4/PM8		
Acenaphthene #	<0.05	<0.05	<0.05	<0.05							<0.05	mg/kg	TM4/PM8		
Fluorene [#]	0.05	<0.04	<0.04	<0.04							<0.04	mg/kg	TM4/PM8		
Phenanthrene #	1.27	0.59	<0.03	<0.03							<0.03	mg/kg	TM4/PM8		
Anthracene #	0.18	<0.04	<0.04	<0.04							<0.04	mg/kg	TM4/PM8		
Fluoranthene#	0.65	0.10	<0.03	<0.03							<0.03	mg/kg	TM4/PM8		
Pyrene #	0.64	0.13	<0.03	<0.03							<0.03	mg/kg	TM4/PM8		
Benzo(a)anthracene *	0.46	0.16	<0.06	<0.06							<0.06	mg/kg	TM4/PM8		
Chrysene #	0.50	0.22	<0.02	<0.02							<0.02	mg/kg	TM4/PM8		
Benzo(bk)fluoranthene "	0.70	0.20	<0.07	<0.07							<0.07	mg/kg			
Denzo(a)pyrene "	0.41	0.10	<0.04	<0.04							<0.04	mg/kg			
ndeno(123ca)pyrene	0.21	0.07	<0.04	<0.04							<0.04	mg/kg			
Benzo(ghi)pen/ene [#]	0.00	0.09	<0.04	<0.04							<0.04	ma/ka	TM4/PM8		
Coronene	<0.04	<0.04	<0.04	<0.04							<0.04	ma/ka	TM4/PM8		
PAH 17 Total	6.04	1.83	<0.64	<0.64							< 0.64	ma/ka	TM4/PM8		
Benzo(b)fluoranthene	0.50	0.14	< 0.05	<0.05							< 0.05	mg/kg	TM4/PM8		
Benzo(k)fluoranthene	0.20	0.06	<0.02	<0.02							<0.02	mg/kg	TM4/PM8		
PAH Surrogate % Recovery	95	93	96	95							<0	%	TM4/PM8		
Mineral Oil (C10-C40)	218	<30	<30	<30							<30	mg/kg	TM5/PM8/PM16		
Client Name: Reference:	Ground In 8507-02-1	nvestigatior 19	ns Ireland			Report :	Solid								
---------------------------------------	------------------------	--------------------	------------	------------	--	------------	------------	--------------	--------------	-------------	--------------	-----------------------			
Location: Contact: JE Job No.:	Stephen I 19/5884	Kealy				Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	elastic tub					
J E Sample No.	36-38	39-41	42-44	45-47						1					
Sample ID	WS102A	WS102A	WS102A	WS102A											
Depth	0.90	1.50	2.50	3.50						Please se	e attached n	otes for all			
COC No / misc										abbrevi	ations and a	cronyms			
Containers	VJT	VJT	VJT	VJT											
Sample Date	07/04/2019	07/04/2019	07/04/2019	07/04/2019											
Sample Type	Soil	Soil	Soil	Soil											
Batch Number	1	1	1	1											
Date of Receipt	10/04/2019	10/04/2019	10/04/2019	10/04/2019						LOD/LOR	Units	Method No.			
TPH CWG															
Aliphatics															
>C5-C6 [#]	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1						<0.1	mg/kg	TM36/PM12			
>C6-C8 #	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1						<0.1	mg/kg	TM36/PM12			
>C8-C10	<0.1	<0.1	<0.1	<0.1						<0.1	mg/kg	TM36/PM12			
>C10-C12"	12.4	<0.2	<0.2	<0.2						<0.2	mg/kg	TM5/PM8/PM16			
>C12-C16"	10	<4	<4	<4						<4	mg/kg	TM5/PM8/PM16			
>C21-C35#	156	<7	<7	<7						<7	ma/ka	TM5/PM8/PM16			
Total aliphatics C5-35	218	<19	<19	<19						<19	ma/ka	TM5/TM38/PM8/PM12/PM1			
Aromatics	-	-	-								3 3				
>C5-EC7 #	<0.1 ^{sv}	<0.1 ^{SV}	<0.1	<0.1						<0.1	mg/kg	TM36/PM12			
>EC7-EC8#	<0.1 ^{sv}	<0.1 ^{sv}	<0.1	<0.1						<0.1	mg/kg	TM36/PM12			
>EC8-EC10 [#]	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1						<0.1	mg/kg	TM36/PM12			
>EC10-EC12#	<0.2	<0.2	<0.2	<0.2						<0.2	mg/kg	TM5/PM8/PM16			
>EC12-EC16 #	16	<4	<4	<4						<4	mg/kg	TM5/PM8/PM16			
>EC16-EC21 #	44	<7	<7	<7						<7	mg/kg	TM5/PM8/PM16			
>EC21-EC35 [#]	191	<7	<7	<7						<7	mg/kg	TM5/PM8/PM16			
Total aromatics C5-35*	251	<19	<19	<19						<19	mg/kg	TM5/TM38/PM8/PM12/PM1			
Total aliphatics and aromatics(C5-35)	469	<38	<38	<38						<38	mg/kg	TM5/TM38/PM8/PM12/PM1			
MTBE #	<5 ^{\$V}	<5 ^{\$V}	<5	<5						<5	ug/kg	TM31/PM12			
Benzene [#]	<5 ^{SV}	<5 ^{SV}	<5	<5						<5	ug/kg	TM31/PM12			
Toluene #	<5 ^{SV}	<5 ^{SV}	<5	<5						<5	ug/kg	TM31/PM12			
Ethylbenzene #	<5 ^{SV}	<5 ^{SV}	<5	<5						<5	ug/kg	TM31/PM12			
m/p-Xylene*	<5" SV	<5 SV	<5	<5						<5	ug/kg	TM31/PM12			
o-Xylene "	<5	<5	<5	<5						<5	ug/kg	TM31/PM12			
PCB 28 [#]	<5	<5	<5	<5						<5	ug/kg	TM17/PM8			
PCB 52#	<5	<5	<5	<5						<5	ug/kg	TM17/PM8			
PCB 101 #	<5	<5	<5	<5						<5	ug/kg	TM17/PM8			
PCB 118 [#]	<5	<5	<5	<5						<5	ug/kg	TM17/PM8			
PCB 138 *	<5	<5	<5	<5						<5	ug/kg	TM17/PM8			
PCB 153"	<5	<5	<5	<5						<5	ug/kg				
Total 7 PCBs#	<35	<35	<35	<35						<35	ug/kg	TM17/PM8			
Total / FOBS	200	200	<00	<00						<00	ug/kg				
Natural Moisture Content	25.6	30.1	34.3	7.2						<0.1	%	PM4/PM0			
% Dry Matter 105°C	77.7	75.7	74.7	93.0						<0.1	%	NONE/PM4			
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3						<0.3	ma/ka	TM38/PM20			
Chromium III	59.3	43.7	47.2	53.3						<0.5	ma/ka	NONE/NONF			
											.98				
Total Organic Carbon #	23.35	27.70	0.61	0.18						<0.02	%	TM21/PM24			

Client Name: Ground Investigations Ireland Reference: 8507-02-19							Report : Solid								
Location: Contact: JE Job No.:	Stephen k 19/5884	Kealy					Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub				
J E Sample No.	36-38	39-41	42-44	45-47											
Sample ID	WS102A	WS102A	WS102A	WS102A											
Depth	0.90	1.50	2.50	3.50							Please se	e attached n	otes for all		
COC No / misc											abbrevi	ations and a	ronyms		
Containers	VJT	VJT	VJT	VJT											
Sample Date	07/04/2019	07/04/2019	07/04/2019	07/04/2019											
Sample Type	Soil	Soil	Soil	Soil									1		
Batch Number	1	1	1	1							LOD/LOR	Units	Method No		
Date of Receipt	10/04/2019	10/04/2019	10/04/2019	10/04/2019									110.		
Loss on Ignition"	12.4 8.35	10.3 8.42	3.2 8.52	<1.0							<1.0	% nH units	TM22/PM0 TM73/PM11		
P11	0.00	0.72	0.02	3.23							-0.01	Pri unito			
Mass of raw test portion	0.1156	0.1185	0.1209	0.097								kg	NONE/PM17		
Mass of dried test portion	0.09	0.09	0.09	0.09								kg	NONE/PM17		

Client Name:								
Reference:								
Location:								
Contact:								

JE Job No.:

Ground Investigations Ireland 8507-02-19

Stephen Kealy

19/5884

Report : CEN 10:1 1 Batch

J E Sample No.	1-3	4-6	7-9	12-14	15-17	18-20	21-23	27-29	30-32	33-35			
Sample ID	WS109	WS109	WS109	WS110	WS110	WS110	WS110	WS112	W\$112	WS112			
Depth	0.90	1.90	2.90	0.90	1.80	2.90	3.50	0.70	1.70	2.70	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019			
Sample Type	Soil												
Batah Numbar		4	4	4	4	4	001	4	001	001			
Battin Kuniber	10/04/0040	1	10/04/0040	1	1	10/04/0040	1	10/04/0040	1	1	LOD/LOR	Units	Method No.
Date of Receipt	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	-0.02		TM20/DM17
Dissolved Antimony (A10)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Arsenic (A10)	0.025	<0.023	<0.039	0.22	<0.023	<0.023	0.25	0.037	<0.037	<0.03	<0.023	ma/ka	TM30/PM17
Dissolved Cadmium (A10)	<0.005	<0.005	<0.005	<0.005	<0.00	<0.00	<0.005	<0.005	<0.005	<0.005	<0.005	ma/ka	TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015	<0.015	0.018	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	ma/ka	TM30/PM17
Dissolved Copper (A10) [#]	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	0.31	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM30/PM17
Dissolved Mercury (A10) #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	TM30/PM17
Dissolved Molybdenum (A10) #	0.08	0.12	0.15	0.04	0.07	0.03	0.12	0.07	0.05	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Nickel (A10) #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Selenium (A10) #	0.11	0.04	<0.03	0.04	<0.03	<0.03	<0.03	0.04	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Zinc (A10) #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Total Phenols HPLC	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/l	TM26/PM0
Fluoride	<3	<3	<3	4	<3	<3	<3	<3	<3	<3	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	409	184	117	954	212	83	594	1096	177	34	<5	mg/kg	TM38/PM0
Chloride [#]	40	30	33	11	50	224	331	198	49	57	<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	4	<2	<2	<2	<2	2	7	<2	<2	3	<2	mg/l	TM60/PM0
Dissolved Organic Carbon	40	<20	<20	<20	<20	20	70	<20	<20	30	<20	mg/kg	TM60/PM0
Total Dissolved Solids [#]	1570	730	1161	2121	730	980	2230	2889	740	1040	<350	mg/kg	TM20/PM0

Exova Jones Enviro	onmenic	u										
Client Name: Reference:	Ground In 8507-02-1	ivestigatior 19	ns Ireland			Report :	CEN 10:1	1 Batch				
Location: Contact:	Stephen k	Kealy				Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub		
JE 300 NO	19/3004			1						1		
J E Sample No.	36-38	39-41	42-44	45-47								
Sample ID	WS102A	WS102A	WS102A	WS102A								
Depth	0.90	1.50	2.50	3.50						Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT								
Sample Date	07/04/2019	07/04/2019	07/04/2019	07/04/2019						1		
Sample Type	Soil	Soil	Soil	Soil						1		
	3011	301	301	301						ļ		
Batch Number	1	1	1	1						LOD/LOR	Units	Method No
Date of Receipt	10/04/2019	10/04/2019	10/04/2019	10/04/2019								
Dissolved Antimony (A10) *	0.32	< 0.02	<0.02	< 0.02						< 0.02	mg/kg	TM30/PM17
Dissolved Arsenic (A10)"	<0.025	<0.025	<0.025	<0.025						<0.025	mg/kg	TM30/PM17
Dissolved Barlum (A10)	<0.09	<0.09	<0.005	<0.05						<0.05	ma/ka	TM30/PM17
Dissolved Chromium (A10) #	<0.015	0.051	<0.015	<0.015						<0.015	mg/kg	TM30/PM17
Dissolved Copper (A10) #	<0.07	<0.07	<0.07	<0.07						<0.07	mg/kg	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	<0.05						<0.05	mg/kg	TM30/PM17
Dissolved Mercury (A10) #	<0.01	<0.01	<0.01	<0.01						<0.01	mg/kg	TM30/PM17
Dissolved Molybdenum (A10) #	0.08	0.10	0.09	0.08						<0.02	mg/kg	TM30/PM17
Dissolved Nickel (A10) #	<0.02	<0.02	<0.02	<0.02						<0.02	mg/kg	TM30/PM17
Dissolved Selenium (A10) *	<0.03	<0.03	<0.03	< 0.03						< 0.03	mg/kg	TM30/PM17
Dissolved Zinc (A10) "	<0.03	<0.03	<0.03	<0.03						<0.03	mg/kg	TM30/PM17
Total Phenols HPLC	<0.05	<0.05	<0.05	<0.05						< 0.05	mg/l	TM26/PM0
Fluoride	4	5	<3	<3						<3	mg/kg	TM173/PM0
Sulphoto oc SO4 #	225	71	73	24						~5	ma/ka	TM38/PM0
Chloride [#]	<3	7	66	95						<3	ma/ka	TM38/PM0
Dissolved Organic Carbon	2	<2	3	<2						<2	mg/l	TM60/PM0
Dissolved Organic Carbon	<20	<20	30	<20						<20	mg/kg	TM60/PM0
Total Dissolved Solids [#]	930	670	810	810						<350	mg/kg	TM20/PM0

Client Name: Reference: Location: Contact: Stephen Kealy

Ground Investigations Ireland 8507-02-19

Report : EN12457_2

JE JOB NO.:	19/5884															
J E Sample No.	1-3	4-6	7-9	12-14	15-17	18-20	21-23	27-29	30-32	33-35						
Sample ID	WS109	WS109	WS109	WS110	WS110	WS110	WS110	WS112	WS112	WS112						
Depth	0.90	1.90	2.90	0.90	1.80	2.90	3.50	0.70	1.70	2.70				Please se	e attached n	otes for all
COC No / misc														abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT						
Sample Date	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019	06/04/2019						
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1	1	1	1	1	1		Stable Non-				Method
Date of Receipt	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	Inert	reactive	Hazardous	LOD LOR	Units	No.
Solid Waste Analysis																
Total Organic Carbon #	0.68	0.47	1.03	12.36	0.57	1.27	3.36	2.10	2.08	2.22	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025 ^{sv}	<0.025 ^{sv}	<0.025	<0.025 ^{sv}	<0.025 ^{sv}	<0.025	<0.025	<0.025	6	-	-	<0.025	mg/kg	TM31/PM12
Sum of 7 PCBs	<0.035	<0.035	<0.035	<0.035	< 0.035	<0.035	<0.035	< 0.035	<0.035	<0.035	1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	<30	<30	<30	57	<30	<30	<30	500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 17	<0.64	<0.64	<0.64	1.33	<0.64	<0.64	<0.64	<0.64	<0.64	0.72	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
Mass of raw test portion	0.1073	0.1021	0.105	0.106	0.103	0.1075	0.1348	0.1066	0.1063	0.1102	-	-	-		ka	NONE/PM17
Dry Matter Content Ratio	84.3	88.4	85.3	84.6	87.8	83.3	66.8	84.4	84.5	81.3	-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.883	0.888	0.885	0.884	0.887	0.882	0.855	0.883	0.884	0.879	-	-	-	-	1	NONE/PM17
Fluate Volume	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	-	-	-			NONE/PM17
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						HOHE/HIH
															1	
															1	
															1	
															l	
															l	
															l	
															l	
															l	
															l	

Exova Jones Envir	onment	al															
Client Name: Reference:	lient Name: Ground Investigations Ireland eference: 8507-02-19							Report : EN12457_2									
Location:							Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub						
Contact: JE Job No.:	Stephen I 19/5884	Kealy									_						
J E Sample No.	36-38	39-41	42-44	45-47													
Sample ID	WS102A	WS102A	WS102A	WS102A													
Depth	0.90	1.50	2.50	3.50										Please se	e attached n	otes for all	
COC No / misc											1			abbrevi	ations and a	cronyms	
Containers	VJT	VJT	VJT	VJT													
Sample Date	07/04/2019	07/04/2019	07/04/2019	07/04/2019							Ì						
Sample Type	Soil	Soil	Soil	Soil							l						
Batch Number	1	1	1	1													
Date of Receipt	10/04/2019	10/04/2019	10/04/2019	10/04/2019							Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Nethod No.	
Solid Waste Analysis	10/0 //2010	10/0 //2010	10/0 //2010	10/0 //2010													
Total Organic Carbon	23.35	27.70	0.61	0.18							3	5	6	<0.02	%	TM21/PM2	
Sum of BTEX	<0.025 ^{sv}	<0.025 ^{sv}	<0.025	<0.025							6	-	-	<0.025	mg/kg	TM31/PM1	
Sum of 7 PCBs	<0.035	<0.035	<0.035	<0.035							1	-	-	<0.035	mg/kg	TM17/PM8	
Mineral Oil	218	<30	<30	<30							500	-	-	<30	mg/kg	TM5/PM8/PM1	
	0.04	1.03	<0.64	<0.64							100	-	-	<0.04	nig/kg	T IVI4/F IVIO	
CEN 10:1 Leachate																	
Mass of raw test portion	0.1156	0.1185	0.1209	0.097							-	-	-	-0.1	kg %	NONE/PM1	
Leachant Volume	0.874	0.871	0.869	0.893							-	-	-	<0.1	78	NONE/PM1	
Eluate Volume	0.8	0.9	0.84	0.8							-	-	-		I	NONE/PM1	
																-	
																ĺ	

Client Name:	Ground Investigations Ireland
Reference:	19/02/8507
Location:	
Contact:	Stephen Kealy

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

1 AM

Ryan Butterworth

Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
19/5884	1	WS109	0.90	2	01/05/2019	General Description (Bulk Analysis)	soil.stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD
					01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAD
19/5884	1	WS109	1.90	5	01/05/2019	General Description (Bulk Analysis)	soil.stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD
					01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAD
19/5884	1	WS109	2.90	8	01/05/2019	General Description (Bulk Analysis)	soil-stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD
					01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAD
19/5884	1	WS110	0.90	13	01/05/2019	General Description (Bulk Analysis)	soil/stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD
					01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAD
19/5884	1	WS110	1.80	16	01/05/2019	General Description (Bulk Analysis)	soil/stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD
					01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAD
19/5884	1	WS110	2.90	19	01/05/2019	General Description (Bulk Analysis)	soil/stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD
					01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAD
19/5884	1	WS110	3.50	22	01/05/2019	General Description (Bulk Analysis)	soil/stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD

Jones Environmental Laboratory

Client Name:							
Reference:							
Location:							

Ground Investigations Ireland 19/02/8507

Location	
Contact:	

Stephen Kealv

oomao	••		Ctophon	lically			
J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
19/5884	1	WS110	3.50	22	01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAD
10/5001		14/0440					
19/5884	1	W5112	0.70	28	01/05/2019	General Description (Bulk Analysis)	soli/stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD
					01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAD
19/5884	1	WS112	1.70	31	01/05/2019	General Description (Bulk Analysis)	soil/stones
10/0001				01	01/05/2019	Ashestos Fibres	NAD
					01/05/2010		NAD
					01/05/2019		NAD
					01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAU
19/5884	1	WS112	2.70	34	01/05/2019	General Description (Bulk Analysis)	soil.stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD
					01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAD
					01/00/2010		
19/5884	1	WS102A	0.90	37	01/05/2019	General Description (Bulk Analysis)	soil.stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD
					01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAD
19/5884	1	WS102A	1.50	40	01/05/2019	General Description (Bulk Analysis)	soil.stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD
					01/05/2019	Ashestos Tyne	NAD
					01/05/2010	Ashestos Level Screen	NAD
					01/03/2013	Asbestos Level Ocleen	
19/5884	1	WS102A	2.50	43	01/05/2019	General Description (Bulk Analysis)	soil.stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD
					01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAD
19/5884	1	WS102A	3.50	46	01/05/2019	General Description (Bulk Analysis)	soil.stones
			2.50		01/05/2019	Asbestos Fibres	NAD
					01/05/2010	Ashestos ACM	NAD
					01/05/2019		NAD
					01/05/2019	Ashestos Lovel Sereen	NAD
					01/05/2019	Asbestos Level Screen	NAD

Client Name: Ground Investigations Ireland

Reference: 8507-02-19

Location:

Contact: Stephen Kealy

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
19/5884	1	WS109	0.90	1-3	EPH, GRO, PAH, PCB	Sample holding time exceeded
19/5884	1	WS109	1.90	4-6	EPH, GRO, PAH, PCB	Sample holding time exceeded
19/5884	1	WS109	2.90	7-9	EPH, GRO, PAH, PCB	Sample holding time exceeded
19/5884	1	WS110	0.90	12-14	EPH, GRO, PAH, PCB	Sample holding time exceeded
19/5884	1	WS110	1.80	15-17	EPH, GRO, PAH, PCB	Sample holding time exceeded
19/5884	1	WS110	2.90	18-20	EPH, GRO, PAH, PCB	Sample holding time exceeded
19/5884	1	WS110	3.50	21-23	EPH, GRO, PAH, PCB	Sample holding time exceeded
19/5884	1	WS112	0.70	27-29	EPH, GRO, PAH, PCB	Sample holding time exceeded
19/5884	1	WS112	1.70	30-32	EPH, GRO, PAH, PCB	Sample holding time exceeded
19/5884	1	WS112	2.70	33-35	EPH, GRO, PAH, PCB	Sample holding time exceeded
19/5884	1	WS102A	0.90	36-38	EPH, GRO, PAH, PCB	Sample holding time exceeded
19/5884	1	WS102A	1.50	39-41	EPH, GRO, PAH, PCB	Sample holding time exceeded
19/5884	1	WS102A	2.50	42-44	EPH, GRO, PAH, PCB	Sample holding time exceeded
19/5884	1	WS102A	3.50	45-47	EPH, GRO, PAH, PCB	Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

Matrix : Solid

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 19/5884

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
Ν	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Appendix - Methods used for WAC (2003/33/EC)

JE Job No.:

19/5884

Leachate tests	
101/1/2012 100000	I.S. EN 12457-2:2002 Specified particle size; water added to L/S ratio; capped; agitated for 24 ± 0.5 hours; eluate settled and
10i/kg; 4mm	filtered over 0.45 µm membrane filter.
Eluate analysis	
As	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ва	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cd	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cr total	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cu	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Hg	I.S. EN 13370 rec. EN 1483 (CVAAS)
Мо	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ni	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Pb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Sb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Se	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Zn	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Chloride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Fluoride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Sulphate	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Phenol index	I.S. EN 13370 rec. ISO 6439 (4-Aminoantipyrine spectrometic methods after distillation)* (BY HPLC - Jones Env)
DOC	I.S. EN 1484
TDS	I.S. EN 15216
Compositional	analysis
TOC	I.S. EN 13137 Method B: carbonates removed with acid: TOC by combustion.
BTEX	GC-FID
PCB7**	I.S. EN 15308 analysis by GC-ECD.
Mineral oil	I.S. EN 14039 C10 to C40 analysis by GC-FID.
PAH17***	I.S. EN 15527 PAH17 analysis by GC-MS
Metals	I.S. EN 13657 - Aqua regia digestion: EN ISO 11885 (ICP-OES)
Other	
Dry matter	I.S. EN 14346 sample is dried to a constant mass in an oven at 105 ± 3 °C; Method B Water content by direct Karl-Fischer titration and either volumetric or coulometric detection.
LOI	I.S. EN 15169 Difference in mass after heating in a furnace up to 550 \pm 25 °C.
ANC	CEN/TS 15364 Determined by amouns of acid or base needed to cover the pH range
Notes: *If not suitable d	ue to LOD, precision, etc., any other suitable method can be used, e.g. AFS, ICP-MS

***Naphthalene, Acenaphthylene, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Benzo(a)pyrene, Chrysene, Coronene, Dibenzo(a,h)anthracene, Fluorene, Fluoranthene, Indeno(1,2,3-c,d)pyrene, Phenanthrene and Pyrene.

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C-440C)	PM0	No preparation is required.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060, APHA Standard Methods for Examination of Water and Wastewater 5310B, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

Ground Investigations Ireland Catherinestown House

Hazelhatch Road

Newcastle Co. Dublin Ireland

Exova Jones Environmental

Registered Office: Exova Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN. Reg No. 11371415

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Stephen Kealy
2nd May, 2019
8507-02-19
Test Report 19/6185 Batch 1
Hickeys 43 Parkgate Place
15th April, 2019
Final report
1

Twelve samples were received for analysis on 15th April, 2019 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Where Waste Acceptance Criteria Suite (EC Decision of 19 December 2002 (2003/33/EC)) has been requested, all analyses have been performed using the relevant EN methods where they exist.

Compiled By:

Phil Sommerton BSc Project Manager

Client Name: Reference: Location: Contact: JE Job No.: Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/6185 Report : Solid

							-				
J E Sample No.	16-18	19-21									
Sample ID	TP102	TP102									
Depth	1.00	2.00					Diagon an	o ottoobod n	otoo for all		
COC No / misc							abbrevi	ations and a	cronyms		
Containers	VIT	VIT									
Containers	VJI	vji									
Sample Date	11/04/2019	11/04/2019									
Sample Type	Soil	Soil							1		
Batch Number	1	1					LOD/LOR	Units	Method		
Date of Receipt	15/04/2019	15/04/2019							No.		
Antimony	-	2					<1	mg/kg	TM30/PM15		
Arsenic [#]	-	14.6					<0.5	mg/kg	TM30/PM15		
Barium [#]	-	66					<1	mg/kg	TM30/PM15		
Cadmium [#]	-	1.8					<0.1	mg/kg	TM30/PM15		
Chromium"	-	23.2					<0.5	mg/kg	TM30/PM15		
Copper"	-	35					<1	mg/kg	TM30/PM15		
Lead	-	42					<0.1	mg/kg	TM30/PM15		
Molybdenum [#]	_	32					<0.1	mg/kg	TM30/PM15		
Nickel [#]	-	35.3					<0.7	ma/ka	TM30/PM15		
Selenium [#]	-	1					<1	mg/kg	TM30/PM15		
Zinc [#]	-	106					<5	mg/kg	TM30/PM15		
Antimony	99 _{AA}	-					<1	mg/kg	TM30/PM62		
Arsenic	30.3	-					<0.5	mg/kg	TM30/PM62		
Barium	209	-					<1	mg/kg	TM30/PM62		
Cadmium	0.4	-					<0.1	mg/kg	TM30/PM62		
Chromium	153.3	-					<0.5	mg/kg	TM30/PM62		
Copper	177	-					<1	mg/kg	TM30/PM62		
Lead	692	-					<5	mg/kg	TM30/PM62		
Mercury	1.8	-					<0.1	mg/kg	TM30/PM62		
Niolybdenum	8.5	-					<0.1	mg/kg	TM30/PM62		
Selenium	70.3	-					<0.7	mg/kg	TM30/PM62		
Zinc	360	_					<5	mg/kg	TM30/PM62		

Client Name: Reference: Location: Contact: JE Job No.: Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/6185 Report : Solid

J E Sample No.	16-18	19-21							
Sample ID	TP102	TP102							
Depth	1.00	2.00					Please se	e attached n	otes for all
COC No / misc							abbrevi	ations and ad	cronyms
Containers	ТГЛ	ТГА							
Sample Date	11/04/2010	11/04/2010							
Oample Date	11/04/2019	11/04/2019							
Sample Type	Soil	Soil							1
Batch Number	1	1					LOD/LOR	Units	Method
Date of Receipt	15/04/2019	15/04/2019							INO.
PAH MS									
Naphthalene #	0.59	<0.04					<0.04	mg/kg	TM4/PM8
Acenaphthylene	0.08	<0.03					<0.03	mg/kg	TM4/PM8
Acenaphthene #	0.08	<0.05					<0.05	mg/kg	TM4/PM8
Fluorene #	0.07	<0.04					<0.04	mg/kg	TM4/PM8
Phenanthrene #	1.42	<0.03					<0.03	mg/kg	TM4/PM8
Anthracene #	0.22	<0.04					<0.04	mg/kg	TM4/PM8
Fluoranthene [#]	1.09	<0.03					<0.03	mg/kg	TM4/PM8
Pyrene #	0.94	<0.03					<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene *	0.55	<0.06					<0.06	mg/kg	TM4/PM8
Chrysene [#]	0.68	<0.02					<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene *	0.99	<0.07					<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene "	0.42	<0.04					<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene "	0.30	<0.04					<0.04	mg/kg	
Dibenzo(ah)anthracene	0.07	<0.04					<0.04	mg/kg	
Benzo(ghi)perylene	0.35	<0.04					<0.04	mg/kg	
	7.06	<0.04					<0.04	mg/kg	
Benzo(b)fluoranthene	0.71	<0.04					<0.04	mg/kg	
Benzo(k)fluoranthene	0.28	<0.02					<0.03	mg/kg	TM4/PM8
PAH Surrogate % Recovery	95	99					<0	%	TM4/PM8
Mineral Oil (C10-C40)	1972	<30					<30	mg/kg	TM5/PM8/PM16
TPH CWG									
Aliphatics	sv								
>C5-C6"	<0.1 sv	<0.1					<0.1	mg/kg	TM36/PM12
>C6-C8"	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>08-010	<0.1	<0.1					<0.1	mg/kg	TM5/DM9/DM12
>010-012	<0.2	<0.2					<0.2	mg/kg	TM5/DM8/DM16
>012-016	120	~7					<7	mg/kg	TM5/PM8/PM16
>C21-C35 [#]	1757	26					<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	1877	26					<19	ma/ka	TM5/TM38/PM8/PM12/PM1

Client Name: Reference: Location: Contact: JE Job No.: Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/6185 Report : Solid

	1		1	1		1	1	1		
J E Sample No.	16-18	19-21						1		
Sample ID	TP102	TP102								
Depth	1.00	2.00						Disession		
COC No / misc								 Please se abbrevi	e attached n ations and a	otes for all cronyms
Our taine								1		
Containers	VJT	VJT						 1		
Sample Date	11/04/2019	11/04/2019								
Sample Type	Soil	Soil								
Batch Number	1	1							Linito	Method
Date of Receipt	15/04/2019	15/04/2019						LOD/LOK	Onits	No.
TPH CWG										
Aromatics										
>C5-EC7#	<0.1 ^{SV}	<0.1						<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1 ^{SV}	<0.1						<0.1	mg/kg	TM36/PM12
>EC8-EC10 [#]	<0.1	<0.1						<0.1	mg/kg	TM36/PM12
>EC10-EC12*	<0.2	<0.2						<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16"	19	<4						<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 *	52 754	</td <td></td> <td></td> <td></td> <td></td> <td></td> <td><7</td> <td>mg/kg</td> <td>TM5/PM8/PM10</td>						<7	mg/kg	TM5/PM8/PM10
>EC21-EC35	825	-19						<19	mg/kg	TM5/TM38/PM8/PM12/PM10
Total aliphatics and aromatics(C5-35)	2702	<38						<38	mg/kg	TM5/TM38/PM8/PM12/PM16
									0.0	
MTBE [#]	<5 ^{\$V}	<5						<5	ug/kg	TM31/PM12
Benzene [#]	<5 ^{\$V}	<5						<5	ug/kg	TM31/PM12
Toluene [#]	<5 ^{SV}	<5						<5	ug/kg	TM31/PM12
Ethylbenzene #	<5 ^{\$V}	<5						<5	ug/kg	TM31/PM12
m/p-Xylene [#]	<5 ^{SV}	<5						<5	ug/kg	TM31/PM12
o-Xylene [#]	<5 ^{SV}	<5						<5	ug/kg	TM31/PM12
		_						-		
PCB 28"	<5	<5						<5	ug/kg	TM17/PM8
PCB 52"	<0	<0						<5	ug/kg	
PCB 118 [#]	<5	<5						<5	ug/kg	TM17/PM8
PCB 138 [#]	<5	<5						<5	ug/kg	TM17/PM8
PCB 153 [#]	<5	<5						<5	ug/kg	TM17/PM8
PCB 180 [#]	<5	<5						<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35	<35						<35	ug/kg	TM17/PM8
Natural Moisture Content	36.3	31.8						<0.1	%	PM4/PM0
% Dry Matter 105°C	78.8	80.4						<0.1	%	NONE/PM4
4										
Hexavalent Chromium *	<0.3	<0.3						<0.3	mg/kg	TM38/PM20
	152.2	23.2						<0.5	mg/kg	
	155.5	-						<0.5	ilig/kg	NONE/NONE
Total Organic Carbon [#]	NDP	0.94						<0.02	%	TM21/PM24
Loss on Ignition#	NDP	20						-10	%	TM22/PM0
DH#	8.49	8.71						<0.01	pH units	TM73/PM11
P	0.40	0.71							promo	
Mass of raw test portion	0.1138	0.1114							kg	NONE/PM17
Mass of dried test portion	0.09	0.09							kg	NONE/PM17

Client Name: Reference: Location: Contact: JE Job No.: Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/6185

Report : CEN 10:1 1 Batch

J E Sample No.	16-18	19-21											
Sample ID	TP102	TP102											
Depth	1.00	2.00									Diagon on	o ottoobod n	atoo for all
COC No / misc											abbrevi	ations and a	cronyms
Contoinoro	VIT	VIT											
Containers	VJI	VJI											
Sample Date	11/04/2019	11/04/2019											
Sample Type	Soil	Soil											
Batch Number	1	1										Units	Method
Date of Receipt	15/04/2019	15/04/2019									LOBILOI	011110	No.
Dissolved Antimony (A10) #	4.17	0.06									<0.02	mg/kg	TM30/PM17
Dissolved Arsenic (A10) #	<0.025	<0.025									<0.025	mg/kg	TM30/PM17
Dissolved Barium (A10) #	0.10	<0.03									<0.03	mg/kg	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005									<0.005	mg/kg	TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015									<0.015	mg/kg	TM30/PM17
Dissolved Copper (A10) #	<0.07	<0.07									<0.07	mg/kg	TM30/PM17
Dissolved Lead (A10) #	<0.05	<0.05									<0.05	mg/kg	TM30/PM17
Dissolved Mercury (A10) *	<0.01	<0.01									<0.01	mg/kg	TM30/PM17
Dissolved Molybdenum (A10) "	0.04	0.08									<0.02	mg/kg	TM30/PM17
Dissolved Nickel (A10)	<0.02	<0.02									<0.02	mg/kg	TM30/PM17
Dissolved Selenium (A10)	<0.03	<0.03									<0.03	mg/kg	TM30/PM17
Dissolved Zinc (ATO)	<0.05	<0.05									<0.05	ilig/kg	11030/110117
Total Phenols HPLC	< 0.05	< 0.05									<0.05	ma/l	TM26/PM0
Fluoride	<3	4									<3	mg/kg	TM173/PM0
Sulphate as SO4 #	38	<5									<5	mg/kg	TM38/PM0
Chloride [#]	<3	5									<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	2	2									<2	mg/l	TM60/PM0
Dissolved Organic Carbon	20	<20									<20	mg/kg	TM60/PM0
Total Dissolved Solids #	1030	820									<350	mg/kg	TM20/PM0
	1	1	1	1	1	1	1	1	1	1	1		1

Exova Jones Envir	onment	al															
Client Name:	Ground Investigations Ireland							Report : EN12457_2									
Reference: Location:	8507-02- Hickeys 4	19 3 Parkgate	e Place				Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub										
JE Job No.:	19/6185	Realy															
J E Sample No.	16-18	19-21									1						
Sample ID	TP102	TP102															
Depth	1.00	2.00												Please se	e attached n	otes for all	
COC No / misc														abbrevi	ations and a	cronyms	
Containers	VJT	VJT									1						
Sample Date	11/04/2019	11/04/2019									Ì						
Sample Type	Soil	Soil															
Batch Number	1	1										0. I. N				Mathod	
Date of Receipt	15/04/2019	15/04/2019									Inert	reactive	Hazardous	LOD LOR	Units	No.	
Solid Waste Analysis																	
Total Organic Carbon #	NDP	0.94									3	5	6	<0.02	%	TM21/PM24	
Sum of BTEX	<0.025 ^{sv}	<0.025									6	-	-	<0.025	mg/kg	TM31/PM12	
Sum of 7 PCBs	< 0.035	<0.035									1	-	-	<0.035	mg/kg	TM17/PM8	
PAH Sum of 17	7.96	<0.64									100	-	-	<0.64	mg/kg mg/kg	TM4/PM8	
CEN 10:1 Leachate																	
Mass of raw test portion	0.1138	0.1114									-	-	-	-0.1	kg	NONE/PM17	
Leachant Volume	0.876	0.878									-	-	-	<0.1	70	NONE/PM14	
Eluate Volume	0.86	0.85									-	-	-		T	NONE/PM17	
															L		

_

Client Name:	Ground Investigations Ireland
Reference:	19/02/8507
Location:	Hickeys 43 Parkgate Place
Contact:	Stephen Kealy

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

1 Altop

Ryan Butterworth

Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
19/6185	1	TP102	1.00	17	23/04/2019	General Description (Bulk Analysis)	Soil/Stones
					23/04/2019	Asbestos Fibres	Fibre Bundles
					23/04/2019	Asbestos ACM	ACM Debris
					23/04/2019	Asbestos Type	Chrysotile
					23/04/2019	Asbestos Level Screen	less than 0.1%
					29/04/2019	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					29/04/2019	Total Detailed Gravimetric Quantification (% Asb)	0.006 (mass %)
					29/04/2019	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	0.006 (mass %)
19/6185	1	TP102	2.00	20	23/04/2019	General Description (Bulk Analysis)	Soil/Stones
					23/04/2019	Asbestos Fibres	NAD
					23/04/2019	Asbestos ACM	NAD
					23/04/2019	Asbestos Type	NAD
					23/04/2019	Asbestos Level Screen	NAD

Matrix : Solid

Client Name:	Ground Investigations Ireland
Reference:	8507-02-19
Location:	Hickeys 43 Parkgate Place
Contact:	Stephen Kealy

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Method No.	NDP Reason
19/6185	1	TP102	1.00	16-18	NONE/NONE	Asbestos detected in sample
19/6185	1	TP102	1.00	16-18	TM22/PM0	Asbestos detected in sample
19/6185	1	TP102	1.00	16-18	TM21/PM24	Asbestos detected in sample

Client Name:Ground Investigations IrelandReference:8507-02-19Location:Hickeys 43 Parkgate PlaceContact:Stephen Kealy

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason				
	No deviating sample report results for job 19/6185									

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 19/6185

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
Ν	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution

Appendix - Methods used for WAC (2003/33/EC)

JE Job No.:

19/6185

Leachate tests								
101/1/2012 4 100 100	I.S. EN 12457-2:2002 Specified particle size; water added to L/S ratio; capped; agitated for 24 ± 0.5 hours; eluate settled and							
filtered over 0.45 µm membrane filter.								
Eluate analysis								
As	I.S. EN 12506 : EN ISO 11885 (ICP-OES)							
Ва	I.S. EN 12506 : EN ISO 11885 (ICP-OES)							
Cd	I.S. EN 12506 : EN ISO 11885 (ICP-OES)							
Cr total	I.S. EN 12506 : EN ISO 11885 (ICP-OES)							
Cu	I.S. EN 12506 : EN ISO 11885 (ICP-OES)							
Hg	I.S. EN 13370 rec. EN 1483 (CVAAS)							
Мо	I.S. EN 12506 : EN ISO 11885 (ICP-OES)							
Ni	I.S. EN 12506 : EN ISO 11885 (ICP-OES)							
Pb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)							
Sb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)							
Se	I.S. EN 12506 : EN ISO 11885 (ICP-OES)							
Zn	I.S. EN 12506 : EN ISO 11885 (ICP-OES)							
Chloride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)							
Fluoride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)							
Sulphate	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)							
Phenol index	I.S. EN 13370 rec. ISO 6439 (4-Aminoantipyrine spectrometic methods after distillation)* (BY HPLC - Jones Env)							
DOC	I.S. EN 1484							
TDS	I.S. EN 15216							
Compositional	analysis							
тос	I.S. EN 13137 Method B: carbonates removed with acid; TOC by combustion.							
BTEX	GC-FID							
PCB7**	I.S. EN 15308 analysis by GC-ECD.							
Mineral oil	I.S. EN 14039 C10 to C40 analysis by GC-FID.							
PAH17***	I.S. EN 15527 PAH17 analysis by GC-MS							
Metals	I.S. EN 13657 - Aqua regia digestion: EN ISO 11885 (ICP-OES)							
Other								
Dry matter	I.S. EN 14346 sample is dried to a constant mass in an oven at 105 ± 3 °C; Method B Water content by direct Karl-Fischer titration and either volumetric or coulometric detection.							
LOI	I.S. EN 15169 Difference in mass after heating in a furnace up to 550 ± 25 °C.							
ANC	CEN/TS 15364 Determined by amouns of acid or base needed to cover the pH range							
Notes: *If not suitable d	ue to LOD, precision, etc., any other suitable method can be used, e.g. AFS, ICP-MS							

***Naphthalene, Acenaphthylene, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Benzo(a)pyrene, Chrysene, Coronene, Dibenzo(a,h)anthracene, Fluorene, Fluoranthene, Indeno(1,2,3-c,d)pyrene, Phenanthrene and Pyrene.

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C- 440C)	PM0	No preparation is required.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM62	Acid digestion of as received solid samples using Aqua Regia refluxed at 112.5 $^\circ\text{C}.$			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060, APHA Standard Methods for Examination of Water and Wastewater 5310B, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM131	Quantification of Asbestos Fibres and ACM, based on HSG248 and SCA method.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	NONE	No Method Code			AR	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

Ground Investigations Ireland Catherinestown House

Hazelhatch Road

Newcastle Co. Dublin Ireland

Exova Jones Environmental

Registered Office: Exova Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN. Reg No. 11371415

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Stephen McLoughlan
Date :	9th May, 2019
Your reference :	8507-02-19
Our reference :	Test Report 19/6282 Batch 1
Location :	Hickeys 43 Pargate place
Date samples received :	16th April, 2019
Status :	Final report
Issue :	1

Fourteen samples were received for analysis on 16th April, 2019 of which eight were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Where Waste Acceptance Criteria Suite (EC Decision of 19 December 2002 (2003/33/EC)) has been requested, all analyses have been performed using the relevant EN methods where they exist.

Compiled By:

Phil Sommerton BSc Project Manager

Client Name:							
Reference:							
Location:							
Contact:							
JE Job No.:							

Ground Investigations Ireland 8507-02-19 Hickeys 43 Pargate place Stephen McLoughlan 19/6282

Report : Solid

										5		
J E Sample No.	5-7	8-10	11-13	17-19	22-24	28-30	31-33	34-36				
Sample ID	BH102	BH102	BH102	BH102	BH103	BH103	BH103	BH103				
Depth	1.00	2.00	3.00	5.00	0.50	2.00	3.00	4.00		Please se	e attached n	otes for all
COC No / misc										abbrevi	cronyms	
Containers	ТLV	ТГЛ	VJT	ТLV	ТLV	ТLV	ТLV	VJT				
Sample Date	14/04/2010	14/04/2010	14/04/2010	14/04/2010	14/04/2010	14/04/2010	14/04/2010	14/04/2010				
Sample Date	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019				
Sample Type	Soil											
Batch Number	1	1	1	1	1	1	1	1		LOD/LOR	Units	Method
Date of Receipt	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019				No.
Antimony	4	2	1	1	3	3	2	2		<1	mg/kg	TM30/PM15
Arsenic [#]	10.4	12.7	13.0	8.8	13.8	13.8	11.2	10.5		<0.5	mg/kg	TM30/PM15
Barium [#]	70	73	102	13	89	145	81	69		<1	mg/kg	TM30/PM15
Cadmium [#]	0.8	1.7	2.0	0.3	1.9	2.3	1.4	1.5		<0.1	mg/kg	TM30/PM15
Chromium #	38.3	39.2	49.9	77.5	35.3	35.9	32.7	59.6		<0.5	mg/kg	TM30/PM15
Copper [#]	31	32	30	5	47	73	37	23		<1	mg/kg	TM30/PM15
Lead [#]	119	39	39	9	48	56	74	25		<5	mg/kg	TM30/PM15
Mercury #	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.4	<0.1		<0.1	mg/kg	TM30/PM15
Molybdenum *	2.9	4.3	3.2	6.5	4.5	4.6	3.5	4.2		<0.1	mg/kg	TM30/PM15
Nickel"	24.6	35.4	46.3	12.9	41.7	41.6	31.9	33.7		<0.7	mg/kg	TM30/PM15
Selenium"	1	2	2	<1	2	2	2	2		<1	mg/kg	TM30/PM15
Zinc	90	00	105	29	132	100	100	102		<0	тід/кд	110130/P10115
PAH MS												
Naphthalene [#]	0.07	< 0.04	< 0.04	< 0.04	0.13	<0.04	< 0.04	<0.04		<0.04	ma/ka	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	0.04	<0.03	<0.03	<0.03		<0.03	mg/kg	TM4/PM8
Acenaphthene #	< 0.05	<0.05	<0.05	<0.05	0.17	<0.05	< 0.05	<0.05		< 0.05	mg/kg	TM4/PM8
Fluorene [#]	<0.04	<0.04	<0.04	<0.04	0.15	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	0.32	<0.03	<0.03	<0.03	1.16	0.10	0.18	<0.03		<0.03	mg/kg	TM4/PM8
Anthracene #	0.08	<0.04	<0.04	<0.04	0.30	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Fluoranthene#	0.50	<0.03	<0.03	<0.03	1.63	0.06	0.07	<0.03		<0.03	mg/kg	TM4/PM8
Pyrene #	0.43	<0.03	<0.03	<0.03	1.42	0.06	0.05	<0.03		<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	0.33	<0.06	<0.06	<0.06	1.03	<0.06	0.08	<0.06		<0.06	mg/kg	TM4/PM8
Chrysene #	0.26	<0.02	0.04	<0.02	0.65	0.04	0.07	<0.02		<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	0.52	<0.07	0.12	<0.07	1.26	<0.07	<0.07	<0.07		<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	0.19	<0.04	<0.04	<0.04	0.60	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #	0.18	<0.04	0.08	<0.04	0.41	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	0.08	<0.04	0.07	<0.04	0.17	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	0.20	<0.04	0.10	<0.04	0.42	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Coronene	0.06	<0.04	<0.04	<0.04	0.09	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
PAH 17 Total	3.22	<0.64	<0.64	<0.64	9.63	<0.64	<0.64	<0.64		<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.37	<0.05	0.09	<0.05	0.91	<0.05	<0.05	<0.05		<0.05	mg/kg	TM4/PM8
Benzo(k)nuorantnene	0.15	<0.02	0.03	<0.02	0.35	<0.02	<0.02	<0.02		<0.02	mg/kg	
PAH Sullogate % Recovery	90	97	97	95	90	94	99	90		<0	70	TIVI4/FIVIO
Mineral Oil (C10-C40)	<30	<30	<30	<30	<30	<30	<30	<30		<30	mg/kg	TM5/PM8/PM16
(, , , , , , , , , , , , , , , , , , ,											39	

Client Name:							
Reference:							
Location:							
Contact:							
JE Job No.:							

Ground Investigations Ireland 8507-02-19 Hickeys 43 Pargate place Stephen McLoughlan 19/6282

Report : Solid

J E Sample No.	5-7	8-10	11-13	17-19	22-24	28-30	31-33	34-36				
Sample ID	BH102	BH102	BH102	BH102	BH103	BH103	BH103	BH103				
Depth	1.00	2.00	3.00	5.00	0.50	2.00	3.00	4.00		Please se	e attached n	otes for all
COC No / misc										abbrevi	cronyms	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019				
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	4	1	1	1	1	1	4	1				T
Daton Number	1	1	1	1	1	1	1	1		LOD/LOR	Units	Method No.
Date of Receipt	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019				
TPH CWG												
>C5-C6 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	-0 1 ^{SV}	-0 1 ^{SV}	<0.1		<0.1	mq/kg	TM36/PM12
>C6-C8 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1		<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1		<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 [#]	<4	<4	<4	<4	<4	<4	<4	<4		<4	mg/kg	TM5/PM8/PM16
>C16-C21#	<7	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
>C21-C35#	<7	<7	<7	<7	<7	<7	27	<7		<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	<19	<19	<19	<19	<19	<19	27	<19		<19	mg/kg	TM5/TM38/PM8/HM120Hwire
~05-F07#	<0.1	<0.1	<0.1	<0.1	<0.1	-0 1 SV	-0 1 SV	<0.1		<0.1	ma/kg	TM36/PM12
>EC7-EC8 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1		<0.1	mg/kg	TM36/PM12
>EC8-EC10 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1		<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 [#]	<4	<4	<4	<4	<4	<4	<4	<4		<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	<7	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 #	<7	<7	<7	<7	<7	<7	41	<7		<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35*	<19	<19	<19	<19	<19	<19	41	<19		<19	mg/kg	TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(U5-35)	<38	<38	<38	<38	<38	<38	68 SV	<38		<38	mg/kg	TM5/TM38/PM8/PM12/PM18
MTBE [#]	<5	<5	<5	<5	<5	<5 ³ *	<5 ³ *	<5		<5	ug/kg	TM31/PM12
Benzene "	<5	<5 ~5	<5 ~5	<5	<5	<5 SV	<5 	<5 ~5		<5	ug/kg	TM31/PM12
Fthvlbenzene [#]	<5	<5	<5	<5	<5	<ə <5sv	<> <5SV	<5		<5	ug/kg	TM31/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5 <5 ^{sv}	<5 <5 ^{sv}	<5		<5	ug/kg	TM31/PM12
o-Xylene [#]	<5	<5	<5	<5	<5	<5 ^{SV}	<5 ^{SV}	<5		<5	ug/kg	TM31/PM12
PCB 28 [#]	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 52 [#]	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 118"	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 138"	<0	<0 ~5	<0 ~5	<0 ~5	<5 ~5	<0	<0 ~5	<5 ~5		<5	ug/kg	TM17/PM8
PCB 133	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35	<35	<35	<35	<35	<35	<35	<35		<35	ug/kg	TM17/PM8
Natural Moisture Content	13.0	15.1	37.8	5.7	10.7	19.5	30.9	32.0		<0.1	%	PM4/PM0
% Dry Matter 105°C	85.8	83.8	75.9	95.7	88.4	81.2	69.5	90.2		<0.1	%	NONE/PM4
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3		<0.3	mg/kg	TM38/PM20
Chromium III	38.3	39.2	49.9	77.5	35.3	35.9	32.7	59.6		<0.5	mg/kg	NONE/NONE
Total Organic Carbon [#]	1.71	1.18	2.08	0.08	1.16	1.73	3.87	1.28		<0.02	%	TM21/PM24

Client Name:							
Reference:							
Location:							
Contact:							
JE Job No.:							

Ground Investigations Ireland 8507-02-19 Hickeys 43 Pargate place Stephen McLoughlan 19/6282

Report : Solid

										_		
J E Sample No.	5-7	8-10	11-13	17-19	22-24	28-30	31-33	34-36				
Sample ID	BH102	BH102	BH102	BH102	BH103	BH103	BH103	BH103				
Depth	1.00	2.00	3.00	5.00	0.50	2.00	3.00	4.00		Please se	otes for all	
COC No / misc										abbrevi	cronyms	
Containers	VJT											
Sample Date	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019				
Sample Type	Soil											
Batch Number	1	1	1	1	1	1	1	1				Method
Date of Receipt	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019		LOD/LOR	Units	No.
Loss on Ignition [#]	3.1	3.3	6.9	<1.0	3.3	4.3	9.1	4.8		<1.0	%	TM22/PM0
pH [#]	9.29	8.41	7.83	9.01	8.71	8.47	7.86	8.10		<0.01	pH units	TM73/PM11
Mass of raw test portion	0 1052	0 1073	0 1183	0.094	0 1013	0 1103	0.13	0 1003			ka	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09			kg	NONE/PM17
											-	

Ground Investigations Ireland 8507-02-19 Hickeys 43 Pargate place Stephen McLoughlan 19/6282

Report : CEN 10:1 1 Batch

										1						
J E Sample No.	5-7	8-10	11-13	17-19	22-24	28-30	31-33	34-36		1						
Sample ID	BH102	BH102	BH102	BH102	BH103	BH103	BH103	BH103								
Depth	1.00	2.00	3.00	5.00	0.50	2.00	3.00	4.00		Plaasa sa	o attached n	otos for all				
COC No / misc										abbrevi	ations and a	cronyms				
Containors	VIT		1													
Containers	VJI															
Sample Date	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019								
Sample Type	Soil															
Batch Number	1	1	1	1	1	1	1	1			11.25	Method				
Date of Receipt	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019		LOD/LOR	Units	No.				
Dissolved Antimony (A10) #	0.07	<0.02	0.03	<0.02	0.09	<0.02	0.05	0.06		<0.02	mg/kg	TM30/PM17				
Dissolved Arsenic (A10) #	0.096	<0.025	<0.025	0.035	<0.025	0.042	<0.025	<0.025		<0.025	mg/kg	TM30/PM17				
Dissolved Barium (A10) #	<0.03	0.09	0.29	<0.03	<0.03	<0.03	0.14	0.20		<0.03	mg/kg	TM30/PM17				
Dissolved Cadmium (A10) #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	mg/kg	TM30/PM17				
Dissolved Chromium (A10) #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015		<0.015	mg/kg	TM30/PM17				
Dissolved Copper (A10) #	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07		<0.07	mg/kg	TM30/PM17				
Dissolved Lead (A10) [#]	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	mg/kg	TM30/PM17				
Dissolved Mercury (A10) #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	mg/kg	TM30/PM17				
Dissolved Molybdenum (A10) *	<0.02	0.15	0.18	<0.02	0.09	0.06	0.57	0.27		<0.02	mg/kg	TM30/PM17				
Dissolved Nickel (A10) *	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02		<0.02	mg/kg	TM30/PM17				
Dissolved Selenium (A10) *	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM30/PM17				
Dissolved Zinc (A10) "	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM30/PM17				
Total Phenols HPLC	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	mg/l	TM26/PM0				
Fluoride	<3	<3	<3	<3	<3	<3	<3	<3		<3	mg/kg	TM173/PM0				
Sulphate as SO4 #	35	10	112	13	15	23	297	110		<5	mg/kg	TM38/PM0				
Chloride [#]	7	109	58	5	5	4	7	4		<3	mg/kg	TM38/PM0				
Dissolved Organic Carbon	2	4	8	<2	2	3	10	7		<2	mg/l	TM60/PM0				
Dissolved Organic Carbon	<20	40	80	<20	<20	30	100	70		<20	mg/kg	TM60/PM0				
Total Dissolved Solids [#]	500	850	1359	630	610	680	1639	1380		<350	mg/kg	TM20/PM0				
		1	1		1	1		1	1	1		1				
Exova Jones Envir	onment	al														
--	--	------------------------------	------------	------------	------------	----------------------	----------------------	------------	--------------	--------------	------------	-------------	-----------	----------------------	-------------------------------	-------------------------
Client Name:	Ground In	vestigatior	ns Ireland				Report :	EN12457	_2							
Reference: Location: Contact: JF Job No.:	8507-02-1 Hickeys 4 Stephen 1 19/6282	19 3 Pargate McLoughla	place n				Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub					
J E Sample No.	5-7	8-10	11-13	17-19	22-24	28-30	31-33	34-36			1					
Sample ID	BH102	BH102	BH102	BH102	BH103	BH103	BH103	BH103								
Depth	1.00	2.00	3.00	5.00	0.50	2.00	3.00	4.00						Please se abbrevi	e attached n iations and a	otes for all cronyms
COC N8 / Misc	V.IT	V.IT	V.IT	V.IT	V.IT	V.IT	V.IT	V.IT								
Sample Date	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019	14/04/2019								
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil								
Batch Number	1	1	1	1	1	1	1	1				Stable Non-		100100	Unite	Method
Date of Receipt	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019	16/04/2019			Inert	reactive	Hazardous	LOD LOR	Units	No.
Solid Waste Analysis																
Total Organic Carbon #	1.71	1.18	2.08	0.08	1.16	1.73	3.87	1.28			3	5	6	<0.02	%	TM21/PM
Sum of BTEX	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025 ^{sv}	<0.025 ^{sv}	<0.025			6	-	-	<0.025	mg/kg	TM31/PM
Sum of 7 PCBs	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035			1	-	-	<0.035	mg/kg	TM17/PM
Mineral Oil	<30	<30	<30	<30	<30	<30	<30	<30			500	-	-	<30	mg/kg	TM5/PM8/PM
PAH Sum of 17	3.22	<0.64	<0.64	<0.64	9.63	<0.64	<0.64	<0.64			100	-	-	<0.64	mg/kg	TM4/PM
CEN 10:1 Leachate																
Mass of raw test portion	0.1052	0.1073	0.1183	0.094	0.1013	0.1103	0.13	0.1003			-	-	-		kg	NONE/PM
Dry Matter Content Ratio	85.8	83.8	75.9	95.7	88.4	81.2	69.5	90.2			-	-	-	<0.1	%	NONE/PN
Leachant Volume	0.885	0.883	0.871	0.896	0.888	0.879	0.86	0.89			-	-	-		1	NONE/PM
Eluate Volume	8.57	0.81	0.8	0.89	0.78	0.83	0.76	0.89			-	-	-		I	NONE/PM
															L	
															L	
															L	
															L	
															L	
															L	
															L	
	1	1	1	1	1	1	1				1	1	1	1	1	1

Client Name:	Ground Investigations Ireland
Reference:	19/02/8507
Location:	Hickeys 43 Pargate place
Contact:	Stephen McLoughlan

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

A AMO

Ryan Butterworth

Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
19/6282	1	BH102	1.00	6	01/05/2019	General Description (Bulk Analysis)	soil-stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD
					01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAD
19/6282	1	BH102	2.00	9	01/05/2019	General Description (Bulk Analysis)	soil.stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD
					01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAD
19/6282	1	BH102	3.00	12	01/05/2019	General Description (Bulk Analysis)	soil-stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD
					01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAD
19/6282	1	BH102	5.00	18	01/05/2019	General Description (Bulk Analysis)	soil-sand-stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD
					01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAD
19/6282	1	BH103	0.50	23	01/05/2019	General Description (Bulk Analysis)	soil.stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD
					01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAD
19/6282	1	BH103	2.00	29	01/05/2019	General Description (Bulk Analysis)	soil-stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD
					01/05/2019	Asbestos Type	NAD
					01/05/2019	Asbestos Level Screen	NAD
19/6282	1	BH103	3.00	32	01/05/2019	General Description (Bulk Analysis)	soil.stones
					01/05/2019	Asbestos Fibres	NAD
					01/05/2019	Asbestos ACM	NAD

Jones Environmental Laboratory

Client N Referer Locatio Contac	lame: nce: on: t:		Ground Investigations Ireland 19/02/8507 Hickeys 43 Pargate place Stephen McLoughlan										
J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result						
19/6282	1	BH103	3.00	32	01/05/2019	Asbestos Type	NAD						
					01/05/2019	Asbestos I evel Screen	NAD						
					01/00/2010								
10/6292	1	PU102	4.00	25	01/05/2010	Conoral Description (Bulk Analysis)	apil stance						
19/0202	- 1	BITTOS	4.00	30	01/05/2019		solistones						
					01/05/2019	Asbestos Fibres	NAD						
					01/05/2019	Asbestos ACM	NAD						
					01/05/2019	Asbestos Type	NAD						
					01/05/2019	Asbestos Level Screen	NAD						
					l								
ŀ													

Client Name:Ground Investigations IrelandReference:8507-02-19Location:Hickeys 43 Pargate placeContact:Stephen McLoughlan

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
19/6282	1	BH102	1.00	5-7	ЕРН, РАН, РСВ	Sample holding time exceeded
19/6282	1	BH102	2.00	8-10	ЕРН, РАН, РСВ	Sample holding time exceeded
19/6282	1	BH102	3.00	11-13	ЕРН, РАН, РСВ	Sample holding time exceeded
19/6282	1	BH102	5.00	17-19	EPH, PAH, PCB	Sample holding time exceeded
19/6282	1	BH103	0.50	22-24	EPH, PAH, PCB	Sample holding time exceeded
19/6282	1	BH103	2.00	28-30	ЕРН, РАН, РСВ	Sample holding time exceeded
19/6282	1	BH103	3.00	31-33	EPH, PAH, PCB	Sample holding time exceeded
19/6282	1	BH103	4.00	34-36	ЕРН, РАН, РСВ	Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

Matrix : Solid

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 19/6282

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Appendix - Methods used for WAC (2003/33/EC)

JE Job No.: 19/6282

Leachate tests	
10l/kg; 4mm	I.S. EN 12457-2:2002 Specified particle size; water added to L/S ratio; capped; agitated for 24 ± 0.5 hours; eluate settled and filtered over 0.45 μm membrane filter.
Eluate analysis	
As	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ва	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cd	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cr total	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cu	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Hg	I.S. EN 13370 rec. EN 1483 (CVAAS)
Мо	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ni	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Pb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Sb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Se	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Zn	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Chloride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Fluoride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Sulphate	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Phenol index	I.S. EN 13370 rec. ISO 6439 (4-Aminoantipyrine spectrometic methods after distillation)* (BY HPLC - Jones Env)
DOC	I.S. EN 1484
TDS	I.S. EN 15216
Compositional a	nalysis
TOC	I.S. EN 13137 Method B: carbonates removed with acid; TOC by combustion.
BTEX	GC-FID
PCB7**	I.S. EN 15308 analysis by GC-ECD.
Mineral oil	I.S. EN 14039 C10 to C40 analysis by GC-FID.
PAH17***	I.S. EN 15527 PAH17 analysis by GC-MS
Metals	I.S. EN 13657 - Aqua regia digestion: EN ISO 11885 (ICP-OES)
Other	
Dry matter	I.S. EN 14346 sample is dried to a constant mass in an oven at 105 ± 3 °C; Method B Water content by direct Karl-Fischer- titration and either volumetric or coulometric detection.
LOI	I.S. EN 15169 Difference in mass after heating in a furnace up to 550 ± 25 °C.
ANC	CEN/TS 15364 Determined by amouns of acid or base needed to cover the pH range
Notes:	

*If not suitable due to LOD, precision, etc., any other suitable method can be used, e.g. AFS, ICP-MS **PCB-28, PCB-52, PCB-101, PCB-118, PCB-138, PCB-153 and PCB-180

***Naphthalene, Acenaphthylene, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Benzo(a)pyrene, Chrysene, Coronene, Dibenzo(a,h)anthracene, Fluorene, Fluoranthene, Indeno(1,2,3-c,d)pyrene, Phenanthrene and Pyrene.

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C-440C)	PM0	No preparation is required.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltenbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060, APHA Standard Methods for Examination of Water and Wastewater 5310B, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

Ground Investigations Ireland Catherinestown House

Hazelhatch Road

Newcastle Co. Dublin Ireland

Exova Jones Environmental

Registered Office: Exova Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN. Reg No. 11371415

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Stephen Kealy
9th May, 2019
8507-02-19
Test Report 19/6335 Batch 1
Hickeys 43 Parkgate Place
17th April, 2019
Final report
1

Five samples were received for analysis on 17th April, 2019 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Where Waste Acceptance Criteria Suite (EC Decision of 19 December 2002 (2003/33/EC)) has been requested, all analyses have been performed using the relevant EN methods where they exist.

Compiled By:

Phil Sommerton BSc Project Manager

Client Name: Reference: Location: Contact: JE Job No.: Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/6335 Report : Solid

									ł		
J E Sample No.	1-3	4-6							1		
Sample ID	BH-104	BH-104									
Denth	3.00	4.00									
Deptil	3.00	4.00							Please see attached notes for a abbreviations and acronyms		
COC No / misc											
Containers	VJT	VJT									
Sample Date	15/04/2019	15/04/2019							1		
Sample Type	Soil	Soil									
Botob Number		4									
Batch Number	I	1							LOD/LOR	Units	Method No.
Date of Receipt	17/04/2019	17/04/2019					-	-			
Antimony	2	3							<1	mg/kg	TM30/PM15
Arsenic [#]	16.1	19.4							<0.5	mg/kg	TM30/PM15
Barium [#]	87	402							<1	mg/kg	TM30/PM15
Cadmium *	0.8	1.1							<0.1	mg/kg	TM30/PM15
Chromium"	30.5	36.6							<0.5	mg/kg	TM30/PM15
Copper"	80	111							<1	mg/kg	TM30/PM15
Lead "	200	232							<0	mg/kg	TM30/PM15
Melvis de sum #	1.1	0.0							<0.1	mg/kg	TM30/PM15
Niekol#	2.4	4.0							<0.1	mg/kg	TM30/PM15
Solonium [#]	50.1	2							<0.7	mg/kg	TM30/PM15
Zinc [#]	108	168							<5	mg/kg	TM30/PM15
2110	100								10	g/tg	
PAH MS											
Naphthalene [#]	< 0.04	< 0.04							<0.04	ma/ka	TM4/PM8
Acenaphthylene	< 0.03	0.13							< 0.03	mg/kg	TM4/PM8
Acenaphthene #	< 0.05	<0.05							<0.05	mg/kg	TM4/PM8
Fluorene [#]	< 0.04	<0.04							< 0.04	mg/kg	TM4/PM8
Phenanthrene [#]	0.46	0.31							<0.03	mg/kg	TM4/PM8
Anthracene #	0.05	0.16							<0.04	mg/kg	TM4/PM8
Fluoranthene#	0.52	1.05							<0.03	mg/kg	TM4/PM8
Pyrene #	0.45	1.09							<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	0.24	0.79							<0.06	mg/kg	TM4/PM8
Chrysene [#]	0.30	0.69							<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	0.46	1.59							<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	0.23	0.71							<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene [#]	0.15	0.56							<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	0.06	0.20							<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	0.17	0.64							<0.04	mg/kg	TM4/PM8
Coronene	<0.04	0.12							<0.04	mg/kg	TM4/PM8
PAH 17 Total	3.09	8.04							<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.33	1.14							<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.13	0.45							<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	97	91							<0	%	TM4/PM8
Mineral Oil (C10-C40)	<30	<30							<30	mg/kg	TM5/PM8/PM16
							l	l			
	1		1	1	1				1	1	1

Client Name: Reference: Location: Contact: JE Job No.: Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/6335

Report : Solid

											-		
J E Sample No.	1-3	4-6											
Sample ID	BH-104	BH-104											
Depth	3.00	4.00									Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT	VJT											
Comula Data	45/04/0040	45/04/0040											
Sample Date	15/04/2019	15/04/2019											
Sample Type	Soil	Soil											
Batch Number	1	1										Lipito	Method
Date of Receipt	17/04/2019	17/04/2019									LOD/LOR	Units	No.
TPH CWG													
Aliphatics													
>C5-C6 [#]	<0.1 ^{sv}	<0.1 ^{sv}									<0.1	mg/kg	TM36/PM12
>C6-C8 [#]	<0.1 ^{SV}	<0.1 ^{SV}									<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1 ^{SV}	<0.1 ^{SV}									<0.1	mg/kg	TM36/PM12
>C10-C12 [#]	<0.2	<0.2									<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 [#]	<4	<4									<4	mg/kg	TM5/PM8/PM16
>C16-C21 #	<7	<7									<7	mg/kg	TM5/PM8/PM16
>C21-C35#	<7	<7									<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	<19	<19									<19	mg/kg	TM5/TM38/PM8/PM12/PM1
Aromatics													
>C5-EC7 #	<0.1 ^{SV}	<0.1 ^{SV}									<0.1	mg/kg	TM36/PM12
>EC7-EC8 [#]	<0.1 ^{SV}	<0.1 ^{SV}									<0.1	mg/kg	TM36/PM12
>EC8-EC10 [#]	<0.1 ^{SV}	<0.1 ^{SV}									<0.1	mg/kg	TM36/PM12
>EC10-EC12 [#]	<0.2	<0.2									<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 [#]	<4	<4									<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	15	<7									<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	<7	56									<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35#	<19	56									<19	mg/kg	TM5/TM38/PM8/PM12/PM1
Total aliphatics and aromatics(C5-35)	<38	56									<38	mg/kg	TM5/TM38/PM8/PM12/PM1
MTBE#	<5 ^{\$V}	<5 ^{SV}									<5	ug/kg	TM31/PM12
Benzene [#]	<5 ^{\$V}	<5 ^{SV}									<5	ug/kg	TM31/PM12
Toluene #	<5 ^{\$V}	<5 ^{\$V}									<5	ug/kg	TM31/PM12
Ethylbenzene #	<5 ^{\$V}	<5 ^{\$V}									<5	ug/kg	TM31/PM12
m/p-Xylene [#]	<5 ^{\$V}	<5 ^{\$V}									<5	ug/kg	TM31/PM12
o-Xylene [#]	<5 ^{SV}	<5 ^{SV}									<5	ug/kg	TM31/PM12
PCB 28 [#]	<5	<5									<5	ug/kg	TM17/PM8
PCB 52#	<5	<5									<5	ug/kg	TM17/PM8
PCB 101 [#]	<5	<5									<5	ug/kg	TM17/PM8
PCB 118 [#]	<5	<5									<5	ug/kg	TM17/PM8
PCB 138 [#]	<5	<5									<5	ug/kg	TM17/PM8
PCB 153 [#]	<5	<5									<5	ug/kg	TM17/PM8
PCB 180 [#]	<5	<5									<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35	<35									<35	ug/kg	TM17/PM8
Natural Moisture Content	16.1	31.1									<0.1	%	PM4/PM0
% Dry Matter 105°C	82.9	65.5									<0.1	%	NONE/PM4
Hexavalent Chromium #	<0.3	<0.3									<0.3	mg/kg	1M38/PM20
	30.5	36.6									<0.5	mg/kg	NONE/NONE
T. 10 101 #	0.00											<i>c</i> :	TMO/ /DMS
Total Organic Carbon "	3.68	4.14	1	1	1	1	1	1	1	1	< 0.02	%	1M21/PM24

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/6335 Report : Solid

J E Sample No.	1-3	4-6											
Sample ID	BH-104	BH-104											
Denth	3.00	4 00											
COC No (mino	0.00	4.00						 Please se abbrevia	e attached ne ations and ac	otes for all cronyms			
COC NO / MISC													
Containers	VJT	VJT											
Sample Date	15/04/2019	15/04/2019											
Sample Type	Soil	Soil											
Batch Number	1	1							Linite	Method			
Date of Receipt	17/04/2019	17/04/2019						LOD/LOR	Units	No.			
Loss on Ignition [#]	5.6	5.8						<1.0	%	TM22/PM0			
рН#	8.83	8.85						<0.01	pH units	TM73/PM11			
Mass of raw test portion	0.1087	0.1369							kg	NONE/PM17			
Mass of dried test portion	0.09	0.09							kg	NONE/PM17			
			[[[[

Client Name: Reference: Location: Contact: JE Job No.: Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/6335

Report : CEN 10:1 1 Batch

J E Sample No.	1-3	4-6											
Sample ID	BH-104	BH-104											
Depth	3.00	4.00									Diagon on	o ottoobod n	otoo for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VIT	VIT											
Ocurate Dete	V J T	V J 1											
Sample Date	15/04/2019	15/04/2019											
Sample Type	Soil	Soil											1
Batch Number	1	1									LOD/LOR	Units	Method
Date of Receipt	17/04/2019	17/04/2019											No.
Dissolved Antimony (A10) #	0.03	<0.02									<0.02	mg/kg	TM30/PM17
Dissolved Arsenic (A10) #	0.096	0.050									<0.025	mg/kg	TM30/PM17
Dissolved Barium (A10) #	<0.03	<0.03									<0.03	mg/kg	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005									<0.005	mg/kg	TM30/PM17
Dissolved Chromium (A10)*	<0.015	<0.015									<0.015	mg/kg	TM30/PM17
Dissolved Copper (A10) "	<0.07	<0.07									<0.07	mg/kg	TM30/PM17
Dissolved Lead (A10)*	<0.05	<0.05									<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum (A10) #	0.07	0.08									<0.01	ma/ka	TM30/PM17
Dissolved Nickel (A10) #	< 0.02	<0.02									<0.02	ma/ka	TM30/PM17
Dissolved Selenium (A10) #	< 0.03	<0.03									<0.03	mg/kg	TM30/PM17
Dissolved Zinc (A10) #	<0.03	<0.03									<0.03	mg/kg	TM30/PM17
Total Phenols HPLC	<0.05	<0.05									<0.05	mg/l	TM26/PM0
Fluoride	<3	3									<3	mg/kg	TM173/PM0
Sulphate as SO4 #	428	95									<5	mg/kg	TM38/PM0
Chloride "	8	40									<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	2	2									-2	ma/l	
Dissolved Organic Carbon	<20	20									<20	ma/ka	TM60/PM0
Total Dissolved Solids [#]	1279	800									<350	mg/kg	TM20/PM0
												00	
	1	1	i i	1	1	1	1	1	1	1	1		1

Exova Jones Envir	onment	al												
Client Name:	Ground Ir	nvestigatior	ns Ireland		Report :	EN12457	2							
Reference:	8507-02-	19												
Location:	Hickeys 4	3 Parkgate	e Place		Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub					
Contact:	Stephen H	Kealy												
JE JOD NO.:	19/0335			 	 				1					
J E Sample No.	1-3	4-6												
Sample ID	BH-104	BH-104												
Depth	3.00	4.00										Please se	e attached n	otes for all
COC No / misc	:											abbrevi	ations and a	cronyms
Containers	VJT	VJT												
Sample Date	15/04/2019	15/04/2019												
Sample Type	Soil	Soil												
Batch Number	1	1								Stable Non-				Method
Date of Receipt	17/04/2019	17/04/2019							Inert	reactive	Hazardous	LOD LOR	Units	No.
Solid Waste Analysis														
Total Organic Carbon #	3.68	4.14							3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025 ^{sv}	<0.025 ^{sv}							6	-	-	<0.025	mg/kg	TM31/PM12
Sum of 7 PCBs	<0.035	<0.035							1	-	-	< 0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30							500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 17	3.09	8.04							100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate														
Mass of raw test portion	0.1087	0.1369							-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	82.9	65.5							-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.881	0.853							-	-	-		1	NONE/PM17
Eluate Volume	0.8	0.79							-	-	-		1	NONE/PM17
														-
														-
														-
														İ
														ĺ
														ĺ
														ĺ
														ĺ
														ĺ

_

Client Name:	Ground Investigations Ireland
Reference:	19/02/8507
Location:	Hickeys 43 Parkgate Place
Contact:	Stephen Kealy

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

-

Ryan Butterworth Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
19/6335	1	BH-104	3.00	2	30/04/2019	General Description (Bulk Analysis)	soil/stones
					30/04/2019	Asbestos Fibres	NAD
					30/04/2019	Asbestos ACM	NAD
					30/04/2019	Asbestos Type	NAD
					30/04/2019	Asbestos Level Screen	NAD
19/6335	1	BH-104	4.00	5	30/04/2019	General Description (Bulk Analysis)	soil/stones
					30/04/2019	Asbestos Fibres	NAD
					30/04/2019	Asbestos ACM	NAD
					30/04/2019	Asbestos Type	NAD
					30/04/2019	Asbestos Level Screen	NAD
						1	

Client Name:Ground Investigations IrelandReference:8507-02-19Location:Hickeys 43 Parkgate PlaceContact:Stephen Kealy

JΕ J E Sample Sample ID Job Batch Depth Analysis Reason No. No. BH-104 EPH, PAH, PCB Sample holding time exceeded 19/6335 1 3.00 1-3 BH-104 EPH, PAH, PCB Sample holding time exceeded 19/6335 1 4.00 4-6

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

Matrix : Solid

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 19/6335

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
Ν	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Appendix - Methods used for WAC (2003/33/EC)

JE Job No.: 19/6335

Leachate tests	
10l/kg; 4mm	I.S. EN 12457-2:2002 Specified particle size; water added to L/S ratio; capped; agitated for 24 ± 0.5 hours; eluate settled and filtered over 0.45 µm membrane filter.
Eluate analysis	
As	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ва	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cd	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cr total	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cu	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Hg	I.S. EN 13370 rec. EN 1483 (CVAAS)
Мо	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ni	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Pb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Sb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Se	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Zn	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Chloride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Fluoride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Sulphate	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Phenol index	I.S. EN 13370 rec. ISO 6439 (4-Aminoantipyrine spectrometic methods after distillation)* (BY HPLC - Jones Env)
DOC	I.S. EN 1484
TDS	I.S. EN 15216
Compositional a	nalysis
TOC	I.S. EN 13137 Method B: carbonates removed with acid; TOC by combustion.
BTEX	GC-FID
PCB7**	I.S. EN 15308 analysis by GC-ECD.
Mineral oil	I.S. EN 14039 C10 to C40 analysis by GC-FID.
PAH17***	I.S. EN 15527 PAH17 analysis by GC-MS
Metals	I.S. EN 13657 - Aqua regia digestion: EN ISO 11885 (ICP-OES)
Other	
	LS EN 44246 complete dright to a constant many in an own at 10E + 2 %C. Mathad D. Water constant hurdinast Vari Sinch-
Dry matter	titration and either volumetric or coulometric detection.
1.01	LS_EN 15169 Difference in mass after beating in a furnace up to 550 + 25 °C.
ANC	CEN/TS 15364 Determined by amouns of acid or base needed to cover the pH range
Notes:	a ta LOD, precision, ata, any other suitable method can be used a g. AES, ICP-MS

**PCB-28, PCB-52, PCB-101, PCB-118, PCB-138, PCB-153 and PCB-180

***Naphthalene, Acenaphthylene, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Benzo(a)pyrene, Chrysene, Coronene, Dibenzo(a,h)anthracene, Fluorene, Fluoranthene, Indeno(1,2,3-c,d)pyrene, Phenanthrene and Pyrene.

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C-440C)	PM0	No preparation is required.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltenbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060, APHA Standard Methods for Examination of Water and Wastewater 5310B, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

Ground Investigations Ireland Catherinestown House

Hazelhatch Road

Newcastle Co. Dublin Ireland

Exova Jones Environmental

Registered Office: Exova Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN. Reg No. 11371415

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Stephen Kealy
Date :	20th May, 2019
Your reference :	8507-02-19
Our reference :	Test Report 19/7526 Batch 1
Location :	Hickeys, 43 Parkgate Place
Date samples received :	9th May, 2019
Status :	Final report
Issue :	1

Five samples were received for analysis on 9th May, 2019 of which five were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

b. June

Bruce Leslie Project Co-ordinator

Client Name: Reference: Location:	Ground In 8507-02-1 Hickevs, 4	ivestigatior 19 13 Parkgati	ns Ireland e Place			Report :	Liquid					
Contact: JE Job No.:	Stephen k 19/7526	Kealy				Liquids/pro H=H ₂ SO ₄ , 2	oducts: V= Z=ZnAc, N=	40ml vial, G NaOH, HN=	i=glass bottl ⊧HN0₃	e, P=plastic	bottle	
J F Sample No.	1-7	8-14	15-21	22-28	29-35							
Sample ID	BH101	BH104	BH103	BH107	BH106							
Donth	2.50	4.21	2.02	2.42	2.26							
Deptil	3.59	4.21	3.03	3.43	3.20					Please se abbrevi	e attached n ations and a	otes for all
COC No / misc										abbievi		bronymo
Containers	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G							
Sample Date	08/05/2019 13:30	08/05/2019 14:30	08/05/2019 15:00	08/05/2019 15:30	08/05/2019 16:00							
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water							
Datab Number												
Batch Number	1	1	1	1	1					LOD/LOR	Units	Method
Date of Receipt	09/05/2019	09/05/2019	09/05/2019	09/05/2019	09/05/2019							140.
Dissolved Aluminium [#]	2.6	40.8	6.6	4.4	<1.5					<1.5	ug/l	TM30/PM14
Dissolved Antimony [#]	<2	<2	5	<2	<2					<2	ug/l	TM30/PM14
Dissolved Arsenic [#]	<0.9	<0.9	10.6	<0.9	<0.9					<0.9	ug/l	TM30/PM14
Dissolved Barium #	155.1	11.4	66.6	42.5	17.5					<1.8	ug/l	TM30/PM14
Dissolved Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	ug/l	TM30/PM14
Dissolved Boron	512	25	99	263	202					<12	ug/l	TM30/PM14
Dissolved Cadmium *	<0.03	<0.03	<0.03	<0.03	<0.03					<0.03	ug/l	TM30/PM14
Dissolved Calcium"	156.7	29.9	107.7	96.2	79.2					<0.2	mg/I	TM30/PM14
Total Dissolved Chromium "	<0.2	<0.2	0.4	<0.2	1.4					<0.2	ug/i	TM30/PM14
Dissolved Cobait	<0.1	<0.1	1.3	0.2	1.3					<0.1	ug/i	TM30/PM14
Total Dissolved Iron [#]	1840.0	17.1	1335.0	160.6	<47					<47	ug/l	TM30/PM14
Dissolved Lead#	<0.4	<0.4	<0.4	<0.4	<0.4					<0.4	ug/l	TM30/PM14
Dissolved Magnesium [#]	188.2	4.3	14.1	26.1	28.9					<0.1	mg/l	TM30/PM14
Dissolved Manganese #	1637.0	24.5	617.3	322.5	635.7					<1.5	ua/l	TM30/PM14
Dissolved Molvbdenum #	2.7	2.5	11.9	10.4	15.3					<0.2	ug/l	TM30/PM14
Dissolved Nickel [#]	0.8	1.3	5.6	5.3	9.6					<0.2	ug/l	TM30/PM14
Dissolved Potassium [#]	54.3	2.6	14.1	16.9	17.7					<0.1	mg/l	TM30/PM14
Dissolved Selenium #	<1.2	<1.2	<1.2	<1.2	<1.2					<1.2	ug/l	TM30/PM14
Dissolved Silver	<5	<5	<5	<5	<5					<5	ug/l	TM30/PM14
Dissolved Sodium [#]	1518.0 _{AB}	17.2	24.6	53.2	110.6					<0.1	mg/l	TM30/PM14
Dissolved Strontium	1375	110	451	683	514					<5	ug/l	TM30/PM14
Dissolved Uranium	<5	<5	<5	<5	<5					<5	ug/l	TM30/PM14
Dissolved Zinc [#]	3.1	12.4	5.6	7.4	2.8					<1.5	ug/l	TM30/PM14
Mercury Dissolved by CVAF #	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	ug/l	TM61/PM0
GRO (>C4-C8) #	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
GRO (>C8-C12) #	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
GRO (>C4-C12) #	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
MTBE#	<5	<5	<5	<5	<5					<5	ug/l	TM31/PM12
Benzene [#]	<5	<5	<5	<5	<5					<5	ug/l	TM31/PM12
Toluene [#]	<5	<5	<5	<5	<5					<5	ug/l	TM31/PM12
Ethylbenzene [#]	<5	<5	<5	<5	<5					<5	ug/l	TM31/PM12
m/p-Xylene [#]	<5	<5	<5	<5	<5					<5	ug/l	TM31/PM12
o-Xylene [#]	<5	<5	<5	<5	<5					<5	ug/l	TM31/PM12
EPH (C8-C40) #	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM30
C8-C40 Mineral Oil (Calculation)	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM30
Fluoride	0.4	0.6	<0.3	<0.3	0.4					<0.3	mg/l	TM173/PM0
Sulphate as SO4 [#]	363.5	44.0	21.5	133.4	97.5					<0.5	mg/l	TM38/PM0
Chloride [#]	2668.9	31.7	31.7	43.6	159.7					<0.3	mg/l	TM38/PM0
Nitrate as NO3 [#]	16.5	2.2	0.4	0.4	1.6					<0.2	ma/l	TM38/PM0

Client Name: Reference: Location: Contact:	Ground In 8507-02-1 Hickeys, 4 Stephen F	ivestigatior 19 13 Parkgati Kealy	ns Ireland e Place			Report : Liquid Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle H=H_SOZ=ZnAc_N=NACH_HN=HNO_							
JE JOD NO.:	19/7526					 H=H ₂ SU ₄ , 4	Z=ZNAC, N=	NaOH, HN=	HINU ₃	L			
J E Sample No.	1-7	8-14	15-21	22-28	29-35								
Sample ID	BH101	BH104	BH103	BH107	BH106								
Denth	3 59	4 21	3.83	3.43	3.26								
Dopui	0.00	7.21	0.00	0.40	0.20					Please se abbrevi	e attached no ations and ac	otes for all cronyms	
COC No / misc													
Containers	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G								
Sample Date	08/05/2019 13:30	08/05/2019 14:30	08/05/2019 15:00	08/05/2019 15:30	08/05/2019 16:00								
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water								
Sample Type	Giouna water	Ground Water	Ground Water	Giouna water	Gibuna water								
Batch Number	1	1	1	1	1					LOD/LOR	Units	Method	
Date of Receipt	09/05/2019	09/05/2019	09/05/2019	09/05/2019	09/05/2019							No.	
Nitrite as NO2 [#]	<0.02	<0.02	<0.02	<0.02	<0.02					<0.02	mg/l	TM38/PM0	
Ortho Phosphate as PO4 #	<0.06	<0.06	<0.06	<0.06	<0.06					<0.06	mg/l	TM38/PM0	
MRP Ortho Phosphate as PO4	<0.06	<0.06	<0.06	<0.06	<0.06					<0.06	mg/l	TM38/PM0	
Ammoniacal Nitrogen as N #	0.24	0.03	6.88	0.29	0.58					<0.03	mg/l	TM38/PM0	
Hexavalent Chromium	<0.006	<0.006	<0.006	<0.006	<0.006					<0.006	mg/l	TM38/PM0	
Total Alkalinity as CaCO3#	368	101	674	362	1114					<1	mg/l	TM75/PM0	
Carbonate Alkalinity as CaCO3	<1	<1	<1	<1	<1					<1	mg/l	TM75/PM0	
Bicarbonate Alkalinity as CaCO3 (water soluble)	368	101	674	362	1114					<1	mg/l	TM75/PM0	
BOD (Settled) #	<1	<1	11	1	<1					<1	mg/l	TM58/PM0	
COD (Settled) #	53	9	28	11	22					<7	mg/l	TM57/PM0	
Electrical Conductivity @25C#	8635	330	735	898	1210					<2	uS/cm	TM76/PM0	
рН#	7.88	7.01	7.62	7.76	7.84					<0.01	pH units	TM73/PM0	
Total Organic Carbon #	<2	<2	6	<2	<2					<2	mg/l	TM60/PM0	
Total Dissolved Solids #	5008	213	448	584	678					<35	mg/l	TM20/PM0	
Total Suspended Solids #	87	32	1524	231	3048					<10	mg/l	TM37/PM0	
Turbidity	59.1	13.0	1705.0 _{AA}	241.0	821.0					<0.1	NTU	TM34/PM0	
Total Cations	90.72	2.66	7.97	9.69	11.59					<0.00	mmolc/l	TM30/PM14	
Total Anions	90.48	3.86	14.82	11.25	28.83					<0.00	mmolc/l	TM0/PM0	
% Cation Excess	0.13	-18.40	-30.06	-7.45	-42.65						%	TM0/PM0	
	l									l	l		
	l									l	l		

Client Name:Ground Investigations IrelandReference:8507-02-19Location:Hickeys, 43 Parkgate PlaceContact:Stephen Kealy

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
					No deviating sample report results for job 19/7526	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 19/7526

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution
AB	x10 Dilution

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
тмо	Not available	PM0	No preparation is required.				
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM34	Turbidity by 2100P Turbidity Meter	PM0	No preparation is required.				
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM37	Modified methods USEPA 160.2, EN872:2005 and SMWW 2540D. Gravimetric determination of Total Suspended Solids. Sample is filtered through a 1.5um pore size glass fibre filter and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.				
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.	Yes			
TM57	Modified US EPA Method 410.4. Comparable with ISO 15705:2002. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	Comparible with ISO 5815:1989. Measurement of Biochemical Oxygen Demand. When CBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand. Determination of Dissolved Oxygen using the Hach UCODO Current Meters	PM0	No preparation is required.	Yes			
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060, APHA Standard Methods for Examination of Water and Wastewater 5310B, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.	Yes			
TM61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM0	No preparation is required.	Yes			
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			

Ground Investigations Ireland Catherinestown House

Hazelhatch Road

Newcastle Co. Dublin Ireland

Exova Jones Environmental

Registered Office: Exova Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN. Reg No. 11371415

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Stephen Kealy
Date :	6th June, 2019
Your reference :	8507-02-19
Our reference :	Test Report 19/7173 Batch 1
Location :	Hickeys 43 Parkgate Place
Date samples received :	2nd May, 2019
Status :	Final report
Issue :	1

Four samples were received for analysis on 2nd May, 2019 of which four were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Where Waste Acceptance Criteria Suite (EC Decision of 19 December 2002 (2003/33/EC)) has been requested, all analyses have been performed using the relevant EN methods where they exist.

Compiled By:

illaumed.

Lucas Halliwell **Project Co-ordinator**

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/7173

Report : Solid

											-			
J E Sample No.	1-3	4-6	7-9	10-12										
Sample ID	WS107	WS107	WS107	WS107										
Depth	0.50	1.70	2.50	3.50							Please see attached notes for all			
COC No / misc											abbrevi	ations and a	cronyms	
Containers	V.I.T	V.IT	V.I.T	V.I.T										
Comula Doto	00/04/0040	00/04/0040	00104/0040	00/04/0040										
Sample Date	30/04/2019	30/04/2019	30/04/2019	30/04/2019										
Sample Type	Soil	Soil	Soil	Soil									-	
Batch Number	1	1	1	1								Unite	Method	
Date of Receipt	02/05/2019	02/05/2019	02/05/2019	02/05/2019							LOD/LOIN	onito	No.	
Antimony	7	2	2	<1							<1	mg/kg	TM30/PM15	
Arsenic [#]	12.8	17.7	10.7	5.6							<0.5	mg/kg	TM30/PM15	
Barium [#]	97	97	71	40							<1	mg/kg	TM30/PM15	
Cadmium [#]	1.1	1.7	1.5	0.6							<0.1	mg/kg	TM30/PM15	
Chromium [#]	45.0	61.8	39.6	57.1							<0.5	mg/kg	TM30/PM15	
Copper [#]	39	28	26	12							<1	mg/kg	TM30/PM15	
Lead [#]	191	37	39	10							<5	mg/kg	TM30/PM15	
Mercury [#]	<0.1	<0.1	<0.1	<0.1							<0.1	mg/kg	TM30/PM15	
Molybdenum [#]	4.1	4.5	3.5	4.3							<0.1	mg/kg	TM30/PM15	
Nickel [#]	24.9	37.3	29.2	17.4							<0.7	mg/kg	TM30/PM15	
Selenium [#]	1	1	2	<1							<1	mg/kg	TM30/PM15	
Zinc [#]	136	121	93	41							<5	mg/kg	TM30/PM15	
PAH MS														
Naphthalene [#]	0.14	< 0.04	< 0.04	< 0.04							< 0.04	ma/ka	TM4/PM8	
Acenaphthylene	< 0.03	<0.03	< 0.03	< 0.03							<0.03	mg/kg	TM4/PM8	
Acenaphthene #	< 0.05	<0.05	<0.05	< 0.05							<0.05	mg/kg	TM4/PM8	
Fluorene [#]	0.05	<0.04	<0.04	<0.04							< 0.04	mg/kg	TM4/PM8	
Phenanthrene [#]	0.87	<0.03	<0.03	<0.03							<0.03	mg/kg	TM4/PM8	
Anthracene #	0.19	<0.04	<0.04	<0.04							<0.04	mg/kg	TM4/PM8	
Fluoranthene#	1.32	<0.03	<0.03	<0.03							<0.03	mg/kg	TM4/PM8	
Pyrene #	1.12	<0.03	<0.03	<0.03							<0.03	mg/kg	TM4/PM8	
Benzo(a)anthracene #	1.13	<0.06	<0.06	<0.06							<0.06	mg/kg	TM4/PM8	
Chrysene [#]	0.96	<0.02	<0.02	<0.02							<0.02	mg/kg	TM4/PM8	
Benzo(bk)fluoranthene #	1.98	<0.07	<0.07	<0.07							<0.07	mg/kg	TM4/PM8	
Benzo(a)pyrene [#]	1.06	<0.04	<0.04	<0.04							<0.04	mg/kg	TM4/PM8	
Indeno(123cd)pyrene #	0.83	<0.04	<0.04	<0.04							<0.04	mg/kg	TM4/PM8	
Dibenzo(ah)anthracene #	0.32	<0.04	<0.04	<0.04							<0.04	mg/kg	TM4/PM8	
Benzo(ghi)perylene [#]	0.83	<0.04	<0.04	<0.04							<0.04	mg/kg	TM4/PM8	
Coronene	0.15	<0.04	<0.04	<0.04							<0.04	mg/kg	TM4/PM8	
PAH 17 Total	10.95	<0.64	<0.64	<0.64							<0.64	mg/kg	TM4/PM8	
Benzo(b)fluoranthene	1.43	<0.05	<0.05	<0.05							<0.05	mg/kg	TM4/PM8	
Benzo(k)fluoranthene	0.55	<0.02	<0.02	<0.02							<0.02	mg/kg	TM4/PM8	
PAH Surrogate % Recovery	91	80	82	84							<0	%	TM4/PM8	
	<20	<20	<20	-20							-20	ma/ka	TM5/PM8/PM16	
19111-01ai Oli (010-040)	<30	<00	<30	<30							<30	шу/кд	TWG/FW0/PW16	

Client Name:								
Reference:								
Location:								
Contact:								
JE Job No.:								

Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/7173

Report : Solid

	•										
J E Sample No.	1-3	4-6	7-9	10-12							
Sample ID	WS107	WS107	WS107	WS107							
Depth	0.50	1.70	2.50	3.50				Ploaso co	o attached n	otos for all	
COC No / misc								abbreviations and acronyms			
Containors	VIT	VIT	VIT	VIT							
Containers	VJI	VJI	VJI	VJI							
Sample Date	30/04/2019	30/04/2019	30/04/2019	30/04/2019			 				
Sample Type	Soil	Soil	Soil	Soil							
Batch Number	1	1	1	1					Linite	Method	
Date of Receipt	02/05/2019	02/05/2019	02/05/2019	02/05/2019				LOD/LOR	Units	No.	
TPH CWG											
Aliphatics											
>C5-C6 [#]	<0.1	<0.1	<0.1 ^{SV}	<0.1				<0.1	mg/kg	TM36/PM12	
>C6-C8 [#]	<0.1	<0.1	<0.1 ^{SV}	<0.1				<0.1	mg/kg	TM36/PM12	
>C8-C10	<0.1	<0.1	<0.1 ^{SV}	<0.1				<0.1	mg/kg	TM36/PM12	
>C10-C12 [#]	<0.2	<0.2	<0.2	<0.2				<0.2	mg/kg	TM5/PM8/PM16	
>C12-C16 [#]	<4	<4	<4	<4				<4	mg/kg	TM5/PM8/PM16	
>C16-C21 #	<7	<7	<7	<7				<7	mg/kg	TM5/PM8/PM16	
>C21-C35#	<7	<7	<7	<7				<7	mg/kg	TM5/PM8/PM16	
Total aliphatics C5-35	<19	<19	<19	<19				<19	mg/kg	TM5/TM38/PM8/PM12/PM16	
Aromatics	-0.1	-0.1	, SV	-0.1				-0.1	malka	TM26/DM42	
>05-E07	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12	
>EC8-EC10 [#]	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12	
>EC10-EC12 [#]	<0.2	<0.2	<0.2	<0.2				<0.2	ma/ka	TM5/PM8/PM16	
>EC12-EC16 [#]	<4	<4	<4	<4				<4	mg/kg	TM5/PM8/PM16	
>EC16-EC21#	<7	<7	<7	<7				<7	mg/kg	TM5/PM8/PM16	
>EC21-EC35 #	24	<7	<7	<7				<7	mg/kg	TM5/PM8/PM16	
Total aromatics C5-35 #	24	<19	<19	<19				<19	mg/kg	TM5/TM38/PM8/PM12/PM16	
Total aliphatics and aromatics(C5-35)	<38	<38	<38	<38				<38	mg/kg	TM5/TM38/PM8/PM12/PM16	
MTBE [#]	<5	<5	<5 ^{\$V}	<5				<5	ug/kg	TM31/PM12	
Benzene [#]	<5	<5	<5 ^{SV}	<5				<5	ug/kg	TM31/PM12	
Toluene [#]	<5	<5	<5 ^{\$V}	<5				<5	ug/kg	TM31/PM12	
Ethylbenzene #	<5	<5	<5 ^{SV}	<5				<5	ug/kg	TM31/PM12	
m/p-Xylene #	<5	<5	<5 ^{SV}	<5				<5	ug/kg	TM31/PM12	
o-Xylene [#]	<5	<5	<5 50	<5				<5	ug/kg	TM31/PM12	
PCB 28 [#]	<5	<5	<5	<5				<5	ug/kg	TM17/PM8	
PCB 52 #	<5	<5	<5	<5				<5	ug/kg	TM17/PM8	
PCB 101 [#]	<5	<5	<5	<5				<5	ug/kg	TM17/PM8	
PCB 118 [#]	<5	<5	<5	<5				<5	ug/kg	TM17/PM8	
PCB 138 [#]	<5	<5	<5	<5				<5	ug/kg	TM17/PM8	
PCB 153 #	<5	<5	<5	<5				<5	ug/kg	TM17/PM8	
PCB 180 [#]	<5	<5	<5	<5				<5	ug/kg	TM17/PM8	
Iotal 7 PCBs"	<35	<35	<35	<35				<35	ug/kg	TM17/PM8	
Natural Moisture Content	14.0	28.9	28.4	13.1				<0.1	%	PM4/PM0	
% Dry Matter 105°C	76.0	72.5	72.6	83.9				<0.1	%	NONE/PM4	
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3				<0.3	mg/kg	TM38/PM20	
Chromium III	45.0	61.8	39.6	57.1				<0.5	mg/kg	NONE/NONE	
Total Organic Carbon #	3.68	1.03	1.31	0.26				<0.02	%	TM21/PM24	

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/7173

Report : Solid

								_		
J E Sample No.	1-3	4-6	7-9	10-12						
Sample ID	WS107	WS107	WS107	WS107						
Depth	0.50	1.70	2.50	3.50				Please se	e attached n	otes for all
COC No / misc								abbrevi	ations and ad	cronyms
Containers	VJT	VJT	VJT	VJT						
Sample Date	30/04/2019	30/04/2019	30/04/2019	30/04/2019						
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1						Method
Date of Receipt	02/05/2019	02/05/2019	02/05/2019	02/05/2019				LOD/LOR	Units	No.
Loss on Ignition [#]	3.9	3.8	4.0	1.1				<1.0	%	TM22/PM0
pH [#]	9.16	8.35	8.09	8.72				<0.01	pH units	TM73/PM11
Mass of raw test portion	0 1187	0 1237	0 1244	0 107					ka	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09					kg	NONE/PM17
		1	1		1					
Client Name:										

Reference:										
Location:										
Contact:										
JE Job No.:										

Ground Investigations Ireland 8507-02-19 Hickeys 43 Parkgate Place Stephen Kealy 19/7173

Report : CEN 10:1 1 Batch

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

J E Sample No.	1-3	4-6	7-9	10-12						1				
Sample ID	WS107	WS107	WS107	WS107										
Depth	0.50	1.70	2.50	3.50						Place cos attachedt for -"				
COC No / misc										abbrevi	Please see attached notes for a abbreviations and acronyms			
Containors	VIT	VIT	VIT	VIT						1				
Containers	VJI	VJI	VJI	VJI										
Sample Date	30/04/2019	30/04/2019	30/04/2019	30/04/2019										
Sample Type	Soil	Soil	Soil	Soil								1		
Batch Number	1	1	1	1							Unite	Method		
Date of Receipt	02/05/2019	02/05/2019	02/05/2019	02/05/2019						200,2010	011110	No.		
Dissolved Antimony (A10) #	0.11	0.03	0.05	0.03						<0.02	mg/kg	TM30/PM17		
Dissolved Arsenic (A10) #	0.194	<0.025	<0.025	<0.025						<0.025	mg/kg	TM30/PM17		
Dissolved Barium (A10) #	0.11	0.06	0.21	0.04						<0.03	mg/kg	TM30/PM17		
Dissolved Cadmium (A10) #	<0.005	<0.005	<0.005	<0.005						<0.005	mg/kg	TM30/PM17		
Dissolved Chromium (A10) #	0.054	<0.015	<0.015	<0.015						<0.015	mg/kg	TM30/PM17		
Dissolved Copper (A10) #	<0.07	<0.07	<0.07	<0.07						<0.07	mg/kg	TM30/PM17		
Dissolved Lead (A10) #	<0.05	<0.05	<0.05	<0.05						<0.05	mg/kg	TM30/PM17		
Dissolved Mercury (A10) #	<0.01	<0.01	<0.01	<0.01						<0.01	mg/kg	TM30/PM17		
Dissolved Molybdenum (A10) #	0.03	0.08	0.71	0.34						<0.02	mg/kg	TM30/PM17		
Dissolved Nickel (A10) #	<0.02	<0.02	0.05	<0.02						<0.02	mg/kg	TM30/PM17		
Dissolved Selenium (A10) #	<0.03	<0.03	<0.03	<0.03						<0.03	mg/kg	TM30/PM17		
Dissolved Zinc (A10) *	0.03	0.04	0.04	0.07						<0.03	mg/kg	TM30/PM17		
Total Phenols HPLC	<0.05	<0.05	<0.05	<0.05						<0.05	mg/l	TM26/PM0		
Fluoride	<3	3	<3	<3						<3	mg/kg	TM173/PM0		
Sulphata as SO/ #	80	7	250	11						~5	ma/ka	TM38/PM0		
Chlorido [#]	-3	-3	230	-3						<3	mg/kg	TM38/PM0		
Chionde	<5	~5	~5	<5						~5	ilig/kg			
Dissolved Organic Carbon	2	4	8	2						<2	ma/l	TM60/PM0		
Dissolved Organic Carbon	20	40	80	20						<20	ma/ka	TM60/PM0		
Total Dissolved Solids #	770	860	1610	830						<350	mg/kg	TM20/PM0		
				1			1	1				1		

Exova Jones Envir	onment	al														
Client Name: Ground Investigations Ireland							Report : EN12457_2 Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub									
Reference: Location:	8507-02-19 Hickeys 43 Parkgate Place Stophon Kooky															
JE Job No.:	19/7173	realy														
J E Sample No.	. 1-3	4-6	7-9	10-12							1					
Sample ID	W\$107	W\$107	W\$107	WS107							1					
Depth	0.50	1.70	2.50	3.50										Please se abbrev	e attached n	otes for all cronyms
COC No / misc		N/ IT	N/IT	VIT												
Containers	V J I	V J I	V J I	V J I												
Sample Date	Soil	30/04/2019 Soil	Soil	30/04/2019 Soil												
Batch Number	1	1	1	1												1
Date of Receipt	02/05/2019	02/05/2019	02/05/2019	02/05/2019							Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
Solid Waste Analysis	02/03/2013	02/03/2013	02/03/2013	02/03/2013												
Total Organic Carbon #	3.68	1.03	1.31	0.26							3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025 ^{sv}	<0.025							6	-	-	<0.025	mg/kg	TM31/PM12
Sum of 7 PCBs	<0.035	<0.035	<0.035	<0.035							1	-	-	<0.035	mg/kg	TM17/PM8
PAH Sum of 17	<30	<30	<30	<30							100	-	-	<30	mg/kg mg/kg	TM5/PM8/PM16 TM4/PM8
															5.5	
CEN 10:1 Leachate																
Mass of raw test portion	0 1187	0 1237	0 1244	0 107							-	_	_		ka	NÓNE/PM17
Dry Matter Content Ratio	76.0	72.5	72.6	83.9							-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.872	0.866	0.866	0.883							-	-	-		I	NONE/PM17
Eluate Volume	0.8	0.7	0.7	0.81							-	-	-		1	NONE/PM17
																-
																1
																1
	1		1	1	1	1	1	1	1	1	1	1	1	1	<u>ــــــــــــــــــــــــــــــــــــ</u>	1

Client Name:	Ground Investigations Ireland
Reference:	19/02/8507
Location:	Hickeys 43 Parkgate Place
Contact:	Stephen Kealy

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

Ryan Butterworth Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
19/7173	1	WS107	0.50	2	29/05/2019	General Description (Bulk Analysis)	Soil/Stones
					29/05/2019	Asbestos Fibres	NAD
					29/05/2019	Asbestos ACM	NAD
					29/05/2019	Asbestos Type	NAD
					29/05/2019	Asbestos Level Screen	NAD
19/7173	1	WS107	1.70	5	29/05/2019	General Description (Bulk Analysis)	Soil/Stones
					29/05/2019	Asbestos Fibres	NAD
					29/05/2019	Asbestos ACM	NAD
					29/05/2019	Asbestos Type	NAD
					29/05/2019	Asbestos Level Screen	NAD
19/7173	1	WS107	2.50	8	29/05/2019	General Description (Bulk Analysis)	Soil/Stones
					29/05/2019	Asbestos Fibres	NAD
					29/05/2019	Asbestos ACM	NAD
					29/05/2019	Asbestos Type	NAD
					29/05/2019	Asbestos Level Screen	NAD
19/7173	1	WS107	3.50	11	29/05/2019	General Description (Bulk Analysis)	Soil/Stones
					29/05/2019	Asbestos Fibres	NAD
					29/05/2019	Asbestos ACM	NAD
					29/05/2019	Asbestos Type	NAD
					29/05/2019	Asbestos Level Screen	NAD

Client Name:Ground Investigations IrelandReference:8507-02-19Location:Hickeys 43 Parkgate PlaceContact:Stephen Kealy

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
19/7173	1	WS107	0.50	1-3	EPH, GRO, LOI, PAH, PCB, TOC	Sample holding time exceeded
19/7173	1	WS107	1.70	4-6	EPH, GRO, LOI, PAH, PCB, TOC	Sample holding time exceeded
19/7173	1	WS107	2.50	7-9	EPH, GRO, LOI, PAH, PCB, TOC	Sample holding time exceeded
19/7173	1	WS107	3.50	10-12	EPH, GRO, LOI, PAH, PCB, TOC	Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

Matrix : Solid

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 19/7173

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Appendix - Methods used for WAC (2003/33/EC)

JE Job No.:

19/7173

Leachate tests	
10l/ka [.] 4mm	I.S. EN 12457-2:2002 Specified particle size; water added to L/S ratio; capped; agitated for 24 ± 0.5 hours; eluate settled and
	filtered over 0.45 µm membrane filter.
Eluate analysis	
As	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ва	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cd	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cr total	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cu	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Hg	I.S. EN 13370 rec. EN 1483 (CVAAS)
Мо	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ni	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Pb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Sb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Se	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Zn	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Chloride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Fluoride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Sulphate	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Phenol index	I.S. EN 13370 rec. ISO 6439 (4-Aminoantipyrine spectrometic methods after distillation)* (BY HPLC - Jones Env)
DOC	I.S. EN 1484
TDS	I.S. EN 15216
Compositional	analysis
тос	I.S. EN 13137 Method B: carbonates removed with acid; TOC by combustion.
BTEX	GC-FID
PCB7**	I.S. EN 15308 analysis by GC-ECD.
Mineral oil	I.S. EN 14039 C10 to C40 analysis by GC-FID.
PAH17***	I.S. EN 15527 PAH17 analysis by GC-MS
Metals	I.S. EN 13657 - Aqua regia digestion: EN ISO 11885 (ICP-OES)
Other	
	LS EN 14246 complete dried to a constant mass in an oven at 105 + 2 °C · Mathad P. Water content by direct Karl Eicabe
Dry matter	titration and either volumetric or coulometric detection.
LOI	I.S. EN 15169 Difference in mass after heating in a furnace up to 550 ± 25 °C.
ANC	CEN/TS 15364 Determined by amouns of acid or base needed to cover the pH range
Notes: *If not suitable d	ue to LOD, precision, etc., any other suitable method can be used, e.g. AFS, ICP-MS

***Naphthalene, Acenaphthylene, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Benzo(a)pyrene, Chrysene, Coronene, Dibenzo(a,h)anthracene, Fluorene, Fluoranthene, Indeno(1,2,3-c,d)pyrene, Phenanthrene and Pyrene.

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C-440C)	PM0	No preparation is required.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060, APHA Standard Methods for Examination of Water and Wastewater 5310B, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.				

APPENDIX 7 – Groundwater and Gas Monitoring Monitoring

Ground Investigations Ireland Gas Monitoring Field Sheet

INCOMINE					(V1 N	lay 2019)			
		Pre	oject In	formatio	n				
Project Number			8507-0)2-19	S	Sample Date		03/05/2019	
Client			AR	JP		Weather			Dry
Site Name			Hick	AVE	Weat	ther Previous	24		Dry
Somelar I D				- -		nours			Diy
Sampler I.D.			P(Data					
			wen	Dala	Stand	lnine Type uP			
Casing Diameter (mr	n)		100r	nm	Jun	etc.	vc		PVC
Standpipe Diameter (r	nm)		50n	าท	Tota	Well Depth (m)		4.0
Stick Up (mm)			Flu	sh	Wate	er Level (mBT)	DC)		
Cover Condition			Go	od		Odour		Odourles	55
Gas Mater Model		6	aotach	GA 5000	G	as Valve/Cap			
Gas Weter Woder			Gas	Data		Condition		III got	Ju repair
	Location	СН4	CO2	0	H2S		Ba	rometric	Additional
Sample I.D.	Туре	(%)	(%)	(ppm)	(ppm)	O2 (%)	P	ressure	Comment
WS110	Gas well	0.0	2.5	1	1	17.5%			
WS114	Gas well	0.1	3.0	1	1	18.2			
WS117	Gas well	1.4	4.3	1	1	12.7			
	Ado	litional	Comme	ents/Obs	ervations	:	<u> </u>		1
						-			

Ground Investigations Ireland Gas Monitoring Field Sheet

					(\	/1 Ma	ay 2019)			
		Pr	oject In	formatio	on				-	
Project Number			8507-0	02-19		Sample Date			30/05/2019	
Client			ARU	JP			Weather			Dry
Cito Nomo			Hick	0.46	V	Veath	ner Previous	24		
Site Name				eys			nours			Dry
Sampler I.D.			P(<u> </u>						
			Well	Data	S	tandı	oipe Type uP	vc		
Casing Diameter (mr	n)		100r	mm			etc.			PVC
Standpipe Diameter (r	nm)		50n	าท	Т	otal	Well Depth (m)		4.0
Stick Up (mm)			Flu	sh	v	Vater	Level (mBTC)C)		
Cover Condition			Go	od			Odour		Odourles	S
Cas Matar Madal			ootoch			Ga	s Valve/Cap			ad rapair
			Gas	Data			condition		in good repair	
Complet D	Location	CH4	CO2	СО	H2	25	02 (0/)	Ва	rometric	Additional
Sample I.D.	Туре	(%)	(%)	(ppm)	(рр	m)	02 (%)	Р	ressure	Comment
WS110	Gas well	0.0	2.8	2	3	3	15.6%			
WS114	Gas well	-	-	-	-	-	-		-	Not Accessible
WS117	Gas well	0.1	3.9	2	3	3	13.0			
	Ado	litional	Comme	ents/Obs	ervat	ions:	l	l		<u> </u>

Ground Investigations Ireland Gas Monitoring Field Sheet

(V1 May 2019) **Project Information** 8507-02-19 Sample Date 13/06/2019 **Project Number** ARUP Weather Client Dry Weather Previous 24 Site Name Hickeys hours Dry Sampler I.D. РС Well Data Standpipe Type uPVC **Casing Diameter (mm)** 100mm etc. PVC Total Well Depth (m) Standpipe Diameter (mm) 50mm 4.0 Flush Water Level (mBTOC) Stick Up (mm) **Cover Condition** Good Odour Odourless Gas Valve/Cap Geotech GA 5000 Condition **Gas Meter Model** In good repair Gas Data CH4 CO2 H2S Barometric Flow Location N2 Sample I.D. 02 (%) (%) (%) Pressure (l/hr) (%) (ppm) Туре Gas well 6.7 1008 0.2 WS110 0.0 86 6.9 _ WS114 Gas well 0.0 5 77 17.7 1008 0.01 _ Additional Comments/Observations:

GROUNDWATER MONITORING - RECENT BOREHOLES

Hickeys - 43 Pargate Place

BOREHOLE	DATE	TIME	GROUNDWATER (mBGL) BEFORE PURGE	GROUNDWATER (mBGL) AFTER PURGE	COMMENT
BH101	03.05.19		3.40	3.44	
BH102	03.05.19				Borehole Not Completed
BH103	03.05.19				Borehole Not Completed
BH104	03.05.19		4.12	4.35	
BH105	03.05.19				Borehole Not Completed
BH106	03.05.19		3.68	4.03	
BH107	03.05.19		3.65	3.73	
BH101	08.05.19			3.59	
BH102	08.05.19				Borehole Not Completed
BH103	08.05.19		3.75	3.83	
BH104	08.05.19			4.10	
BH105	08.05.19				Borehole Not Completed
BH106	08.05.19			3.26	
BH107	08.05.19			3.43	
BH101	30.05.19	14.50		4.02	
BH102	30.05.19				Not Accessible
BH103	30.05.19	15.00		3.88	

BOREHOLE	DATE	TIME	GROUNDWATER (mBGL) BEFORE PURGE	GROUNDWATER (mBGL) AFTER PURGE	COMMENT
BH104	30.05.19	16.20		5.43	
BH105	30.05.19				
BH106	30.05.19	15.50		4.49	
BH107	30.05.19	15.40		4.27	
BH101	13.06.19	11.39	3.44	3.44	
BH102	13.06.19				Not Accessible
BH103	13.06.19	11.07		3.83	
BH104	13.06.19	11.00		4.46	
BH105	13.06.19	10.45		3.14	
BH106	13.06.19	10.32		3.52	
BH107	13.06.19	10.27		3.73	

GROUNDWATER MONITORING

Hickeys - 43 Pargate Place - Historic Boreholes

BOREHOLE	DATE	TIME	GROUNDWATER (mBGL) BEFORE PURGE	GROUNDWATER (mBGL) AFTER PURGE	COMMENT
BH01	03/05/2019	11.18	2.87	2.95	
BH02	03/05/2019	12.00	3.38	3.42	
BH05	03/05/2019	12.30		3.10	Could not purge due to small diameter pipe
BH06	03/05/2019	13.0	3.36	3.36	
WS02	03/05/2019	13.35			No Water
WS06	03/05/2019	13.45	2.34	2.54	
WS05	03/05/2019	13.50			No Water
WS07	03/05/2019				Not Found
WS10	03/05/2019				Not possible to open
WS12	03/05/2019	14.10	3.68	3.72	
WS13	03/05/2019	14.30	3.60	3.60	
WS16	03/05/2019	15.00			No Water
BH01	30/05/2019	14.30		3.22	
BH02	30/05/2019	14.40		3.65	
BH07	30/05/2019	15.20			No Water
BH01	13/06/2019	11.36		3.01	
BH02	13/06/2019	11.33		3.44	

BOREHOLE	DATE	TIME	GROUNDWATER (mBGL) BEFORE PURGE	GROUNDWATER (mBGL) AFTER PURGE	COMMENT
BH05	13/06/2019				Not accessible
BH07	13/06/2019				No Water
WS05	13/06/2019				No Water
WS10	13/06/2019				Not possible to open
WS12	13/06/2019				Not possible to open - covered with cement
WS 13	13/06/2019	10.39	3.54		
WS14	13/06/2019				Not possible to open - covered with cement
WS16	13/06/2019				No Water

APPENDIX 8 – Permeability Test Records

Test Type	Slug Test	Diameter of hole (m)	0.10
Well ID	BH101	Depth of test (mbgl)	4.01
Date	10/06/2019	Dimensions of Slug (m)	0.05
Test Start Time	13:15	Test End Time	15:15
Time elapsed (min)	Dipped Waterlevel (mbgl)	Time elapsed (min)	Dipped Waterlevel (mbgl)
0	4.01	35	3.83
0.5	3.84	40	3.82
1	3.84	45	3.82
1.5	3.84	50	3.82
2	3.84	55	3.81
2.5	3.84	60	3.80
3	3.84	75	3.78
3.5	3.84	90	3.77
4	3.84	105	3.77
4.5	3.84	120	3.77
5	3.84		
6	3.84		
7	3.84		
8	3.84		
9	3.84		
10	3.84		
12	3.84		
14	3.84		
16	3.84		
18	3.84		
20	3.83		
22	3.83		
24	3.83		
26	3.83		
28	3.83		
30	3.83		
Comments:	Waterlevel prior to purge (12) test.	:45), 3.28mbgl; pur	ged for 90 minutes prior to

Test Type	Slug Test	Diameter of hole (m)	0.10
Well ID	BH106	Depth of test (mbgl)	4.01
Date	10/06/2019	Dimensions of Slug (m)	0.05
Test Start Time	15:20	Test End Time	17:20
Time elapsed (min)	Dipped Waterlevel (mbgl)	Time elapsed (min)	Dipped Waterlevel (mbgl)
0	4.80	35	4.31
0.5	4.46	40	4.29
1	4.42	45	4.27
1.5	4.42	50	4.25
2	4.42	55	4.24
2.5	4.42	60	4.23
3	4.42	75	4.23
3.5	4.42	90	4.23
4	4.42	105	4.23
4.5	4.42	120	4.23
5	4.42		
6	4.41		
7	4.41		
8	4.41		
9	4.40		
10	4.39		
12	4.39		
14	4.38		
16	4.38		
18	4.38		
20	4.37		
22	4.36		
24	4.35		
26	4.35		
28	4.34		
30	4.32		
Comments:	Waterlevel prior to purge (14	:50), 4.62mbgl; pur	ged for 1 hour prior to test.

APPENDIX 9 – Geophysical Survey

AGP19036_01

REPORT

ON THE

GEOPHYSICAL INVESTIGATION

AT THE

PARKGATE ST. SITE, DUBLIN

FOR

GROUND INVESTIGATIONS IRELAND LIMITED

APEX Geophysics Limited Unit 6, Knockmullen Business Park Gorey Co. Wexford

> T: 0402 21842 F: 0402 21843 E: info@apexgeophysics.ie W: www.apexgeophysics.com

15TH MAY 2019

PRIVATE AND CONFIDENTIAL

THE FINDINGS OF THIS REPORT ARE THE RESULT OF A GEOPHYSICAL SURVEY USING NON-INVASIVE SURVEY TECHNIQUES CARRIED OUT AT THE GROUND SURFACE. INTERPRETATIONS CONTAINED IN THIS REPORT ARE DERIVED FROM A KNOWLEDGE OF THE GROUND CONDITIONS, THE GEOPHYSICAL RESPONSES OF GROUND MATERIALS AND THE EXPERIENCE OF THE AUTHOR. APEX GEOPHYSICS LTD. HAS PREPARED THIS REPORT IN LINE WITH BEST CURRENT PRACTICE AND WITH ALL REASONABLE SKILL, CARE AND DILIGENCE IN CONSIDERATION OF THE LIMITS IMPOSED BY THE SURVEY TECHNIQUES USED AND THE RESOURCES DEVOTED TO IT BY AGREEMENT WITH THE CLIENT. THE INTERPRETATIVE BASIS OF THE CONCLUSIONS CONTAINED IN THIS REPORT SHOULD BE TAKEN INTO ACCOUNT IN ANY FUTURE USE OF THIS REPORT.

PROJECT NUMBER	AGP19021		
AUTHOR	CHECKED	REPORT STATUS	DATE
EURGEOL YVONNE O'CONNELL PH.D., M.Sc. (GEOPHYSICS), PGEO	Tony Lombard M.Sc (geophysics)	V.01	15 [™] May 2019

CONTENTS

1.	EXECUTIVE SUMMARY
2.	INTRODUCTION
2.1	Survey Objectives2
2.2	Site Background2
2.2	1 Soils
2.2	2 Geology4
2.2	3 Groundwater Vulnerability4
2.2	4 Historical Data5
2.2	5 Direct Investigation Data5
2.3	Survey Rationale5
3.	RESULTS
3.1	Seismic Refraction P-wave Velocity Profiling6
3.3	MASW S-wave Velocity Profiling7
3.4	Discussion9
4.	RECOMMENDATIONS
REFER	NCES 10
APPEN	DIX A: DETAILED METHODOLOGY
Seism	ic Refraction Profiling11
Multi	channel Analysis of Surface Waves (MASW)12
Spatia	I Relocation
APPEN	DIX B: DRAWINGS

1. EXECUTIVE SUMMARY

APEX Geophysics Limited was requested by Ground Investigations Ireland Limited to carry out a geophysical survey at the Hickeys Site in Parkgate Street, Dublin. The site is located between Parkgate Street and the River Liffey, west of Sean Heuston Bridge and consists of a building with a car parking area to the west.

The survey was requested to aid in completing the ground model for the site, delineating the possible presence of an infill channel through the site and mapping any variation in the rockhead depth. Site topography ranges from 3.6 MSL southwest of the building, increasing to approx. 5.5 MSL along Parkgate Street, north and north east of the site.

Preliminary trial pit and borehole information provided to assist in the compilation of this report typically indicated 1.8 to 2.5 m made ground predominantly comprising sandy gravelly clay over soft to firm sandy gravelly clay, over loose to medium dense slightly clayey sand/gravel.

The geophysical survey was carried out on the night of April 13^{th} , 2019. The investigation consisted of 4 x Pwave Seismic Refraction profiles coupled with 2 x 2D MASW profiles at accessible locations west and north of the building in addition to 4 x P-wave Seismic Refraction profiles and 4 x 1D MASW profiles within the building.

The geophysical data has been interpreted as indicating 4 subsurface layers across the site:

- Layer 1 has an average thickness of 0.7 m. This layer has low Vp velocities (average 185 m/s) which would indicate very soft or very loose material. In conjunction with the available borehole and trial pit information this layer is likely to comprise of made ground.
- Layer 2 has an average thickness of 2.0 m. This layer has an average Vp velocity of 385 m/s which would indicate soft or loose material. This layer has an average Poisson's Ratio of 0.36. In conjunction with the available borehole and trial pit information this layer is likely to comprise of made ground.
- Layer 3 has an average thickness of 5.5 m. This layer has an average Vp velocity of 1120 m/s which would indicate firm to stiff or medium dense to dense material. The Vs velocities indicate firm/medium dense material in the upper half of the layer and stiff/dense material in the lower half of the layer. This layer has an average Poisson's Ratio of 0.47. In conjunction with the available borehole and trial pit information this layer is likely to comprise of sandy gravelly clay overlying clayey sand/gravel.
- Layer 4 at an average depth of 8.2 m BGL has an average Vp velocity of 3215 m/s which is indicative of slightly weathered to fresh rock.

The findings of the geophysical investigation should be reviewed on completion of the direct investigation.

2. INTRODUCTION

APEX Geophysics Limited was requested by Ground Investigations Ireland Limited to carry out a geophysical survey at the Hickeys Site in Parkgate Street, Dublin. Available ground investigation data indicates that rockhead levels range from 8 m to 10 m below ground level (BGL), however Geological Survey of Ireland (GSI) Quaternary maps indicate the possible presence of a deep infilled gravel/glacial channel running north-south through the centre of the site. There is also a risk that rockhead levels may dip significantly through the centre of the site. The survey was requested to aid in completing the ground model for the site, delineating the possible presence of an infill channel through the site and mapping any variation in the rockhead depth.

2.1 Survey Objectives

The objectives of the investigation were to provide information on:

- variations in soil thickness and stratigraphy,
- variations in depth to bedrock,
- engineering properties of the overburden and underlying bedrock .

2.2 Site Background

The site is located between Parkgate Street and the River Liffey, west of Sean Heuston Bridge (Figure 2.1). The site consists of an existing building with a car parking area to the west of the building (Figure 2.2). Site topography ranges from 3.6 MSL southwest of the building, increasing to approx. 5.5 MSL along Parkgate Street, north and north east of the site.

Fig 2.1: Location map (site outlined in red).

Fig 2.2: Aerial photo (site outlined in red).

2.2.1 Soils

The GSI and Teagasc subsoils map for the area (Figure 2.3) indicates that the site is underlain by urban deposits, with till derived from limestone in the broader area, alluvium channels along the River Liffey to the south and along a meltwater channel mapped northwest of the site.

Fig 2.3: The GSI/Teagasc subsoils map (site outlined in red) with meltwater channel mapped as a blue line.

2.2.2 Geology

The GSI 1:100k Bedrock Geology map (Figure 2.4) indicates that the site is underlain by muddy limestone and shale of the Lucan Formation (Calp). The Lucan Formation is classified as a 'Locally Important aquifer – bedrock which is moderately productive only in local zones'.

Fig 2.4: The GSI bedrock map (site outlined in red).

2.2.3 Groundwater Vulnerability

The groundwater vulnerability rating for the site (Figure 2.5) is classified as low in the north of the site and moderate in the south of the site.

Fig 2.5: The GSI groundwater vulnerability classification map (site outlined in red).

2.2.4 Historical Data

The historical 6 inch sheet for the area indicates channels of alluvium running east-west north of the site and through the site, with a north-south alluvium channel mapped south of the site (Figure 2.5).

Fig 2.5: The historical 6inch map (site outlined in red, blue outlines alluvium deposits).

2.2.5 Direct Investigation Data

Preliminary trial pit and borehole information was provided to assist in the compilation of this report. The trial pits and boreholes typically indicated 1.8 to 2.5 m made ground predominantly comprising sandy gravelly clay over soft to firm sandy gravelly clay, over loose to medium dense slightly clayey sand/gravel.

2.3 Survey Rationale

The investigation consisted of P-wave Seismic Refraction profiling coupled with 2D and 1D Multichannel Analysis of Surface Wave (MASW) profiling:

P-wave Seismic Refraction profiling measures the P-wave velocity (Vp) of refracted seismic waves through the overburden and rock material and allows an assessment of the thickness and quality of the materials present to be made. Stiffer and stronger materials usually have higher seismic velocities while soft, loose or fractured materials have lower velocities.

The **MASW** method is used to estimate Shear-wave velocities (Vs) and Gmax values of the ground material. Overburden material with a Vs <175 m/s is generally classified as soft/loose. The data was acquired using the same acquisition geometry as the P-wave Seismic Refraction profiling.

As with all geophysical methods the results are based on indirect readings of the subsurface properties. The effectiveness of the proposed approach will be affected by variations in the ground properties. Further information on the detailed methodology of each geophysical method employed in this investigation is given in **APPENDIX A: DETAILED METHODOLOGY**.

3. RESULTS

The survey was carried out on the night of April 13^{th} , 2019. The investigation consisted of 4 x P-wave Seismic Refraction profiles (S5, S6, S7 & S8) coupled with 2 x 2D MASW profiles (M1 & M2) at accessible locations west and north of the building in addition to 4 x P-wave Seismic Refraction profiles (S1, S2, S3 & S4) and 4 x 1D MASW profiles within the building (Figure 3.1).

The Seismic Refraction data quality was fair outside of the building and relatively poor within the building (due to ground conditions e.g. concrete and vibration noise from e.g. vehicle traffic and services). As such, P-wave (Vp) results could only be obtained for one P-wave Seismic Refraction profile (S3) within the building.

Fig 3.1: Aerial photo (site outlined in red).

The geophysical survey locations are indicated on Drawing AGP19036_01 (Appendix B). Geophysical results and interpreted sections are plotted on Drawings AGP19036_02 and AGP19036_03 (Appendix B).

3.1 Seismic Refraction P-wave Velocity Profiling

Eight seismic refraction spreads were acquired (S1-S8). The seismic refraction data for profiles (S3, S5, S6, S7 & S8) indicated 4 velocity layers which have been interpreted as follows:

Layer	Seismic Vp Velocity (m/s)	Average Vp Seismic Velocity (m/s)	Interpretation	Stiffness/ Rock Quality	Excavatability
1	148-364	210	Soil	Soft /Loose	Diggable
2	329-556	405	Soil	Soft-Firm/Loose-medium dense	
3	626-1541	1100	Soil	Firm-Stiff/Medium Dense to Dense	
4	2710-3516	3070	Slightly Weathered – Fresh Bedrock	Good	Break/Blast

3.3 MASW S-wave Velocity Profiling

1D shear-wave velocity (Vs) and Gmax values were determined for the overburden material for each of the 4 P-wave seismic refraction profiles within the building. These have been plotted on Figures 3.2 and 3.3 together with 1D profiles for S5, S6, S7 and S8 taken from the 2D MASW profiles (M1 & M2).

The shallowest resolvable depth is a function of the shortest wavelength which is related to the geophone spacing. In this survey geophone spacings of 1.5 m to 3 m were employed to obtain a depth of investigation to rockhead. This has allowed the derivation of Vs/Gmax values from depths of approx. 1 m BGL to depths of 7 to 9 m BGL.

Vs values generally ranged from 135-360 m/s (Figure 3.2). The material in the upper 1 m to 2m is predominantly firm/medium dense (with the exception of S6 near the river). Soft/loose material was indicated from 2 m to 4m for S1, S3, S5 and S6 with firmer, denser material in the upper 4m underlying S2, S4, S7 and S8. The MASW data indicates Vs and Gmax values increasing with depth indicating stiff cohesive soils or dense non-cohesive soils at depths generally >4 m BGL. Vs values and corresponding soil cohesion ranges are summarised in Figure A.1, Appendix A.

Gmax values generally ranged from 40-300 MPa (Figure 3.3). A soil density of 2000 kg/m³ was used in the Gmax calculations.

Shear wave Velocity, Vs (m/s)

Fig 3.2: Vs values for S1-S8.

Poisson's Ratio values have been determined for the soil layers for seismic refraction profiles S3, S5, S6, S7 and S8 (Figure 3.4). An average value of 0.36 has been determined for the upper 2.5 m and an average value of 0.47 has been determined for the underlying soils. No Vs values were determined in the upper c. 1 m.

Profile	Seismic Layer	Depth m BGL	Vp m/s	Vs m/s	Poissons Ratio
S3	Laver 1 Layer 2	1.02 2.63 7.80	252 429 903	215 280	0.33
S5	Layer 3 Layer 2 Layer 3	0.42 2.34 6.15	283 467 1069	201 238	0.39
S6	Laver 1 Layer 2 Layer 3	0.70 2.67 8.35	154 391 1071	146 245	0.42 0.47
S7	Laver 1 Layer 2 Layer 3	0.58 2.03 5.83	174 409 1437	182 268	0.38 0.48
S8	Laver 1 Layer 2 Layer 3	0.66 2.71 7.17	184 341 1005	198 265	0.26 0.46
Average	Laver 1 Layer 2 Layer 2	0.7 2.5 7.1	210 409 1097	188 259	0.36 0.47

Fig 3.4: Poisson's Ratio values determined from Vp & Vs values.

Note: Derived Vp and Vs values have been used for Poisson's Ratio calculations. These geotechnical parameters should be assessed by a geotechnical engineer.

3.4 Discussion

The combined Vp and Vs results have been summarised on the following basis:

Layer	Ave. Thickness (m)	Ave. Vp (m/s)	Ave. Vs (m/s)	Ave. Poisson's Ratio	Interpretation	Estimated Stiffness/ Rock Quality	Estimated Excavatability
1	0.7	185			Made Ground/Soils	Very soft-Very loose	Diggable
2	2.0	385	188	0.36	Made Ground/Soils	Soft-Firm/Loose-Medium dense	
3	5.5	1120	259	0.47	Soils	Firm-stiff/ Medium dense - dense	
4		3215			Slightly Weathered - Fresh Bedrock	Good	Break/Blast

The geophysical data indicates 4 subsurface layers interpreted as follows:

Layer 1 has an average thickness of 0.7 m. This layer has low Vp velocities (average 185 m/s) which would indicate very soft or very loose material. In conjunction with the available borehole and trial pit information this layer is likely to comprise of made ground.

Layer 2 has an average thickness of 2.0 m. This layer has an average Vp velocity of 385 m/s which would indicate soft to firm or loose to medium dense material. This layer has an average Poisson's Ratio of 0.36. In conjunction with the available borehole and trial pit information this layer is likely to comprise of made ground.

Layer 3 has an average thickness of 5.5 m. This layer has an average Vp velocity of 1120 m/s which would indicate firm to stiff or medium dense to dense material. The Vs velocities (see Drawing AGP19036_02) indicate firm/medium dense material in the upper half of the layer and stiff/dense material in the lower half of the layer. This layer has an average Poisson's Ratio of 0.47. In conjunction with the available borehole and trial pit information this layer is likely to comprise of sandy gravelly clay overlying clayey sand/gravel.

Layer 4 at an average depth of 8.2 m BGL has an average Vp velocity of 3215 m/s which is indicative of slightly weathered to fresh rock.

4. **RECOMMENDATIONS**

The findings of the geophysical investigation should be reviewed on completion of the direct investigation.

REFERENCES

Bell F.G., 1993; 'Engineering Geology', Blackwell Scientific Press.

Davies & Schulteiss, 1980; 'Seismic signal processing in Engineering Site Investigation – a case history', Ground Engineering, May 1980.

GSI, 2017; Bedrock Geology 1:100,000 Shapefile. <u>http://www.gsi.ie/Mapping.htm</u>

GSI, 2017; GSI/Teagasc Subsoils Shapefile. <u>http://www.gsi.ie/Mapping.htm</u>

GSI, 2017; Groundwater Vulnerability Shapefile. <u>http://www.gsi.ie/Mapping.htm</u>

Hagedoorn, J.G., 1959; 'The plus - minus method of interpreting seismic refraction sections', Geophysical Prospecting, 7, 158 - 182.

Palmer, D., 1980; 'The Generalized Reciprocal Method of seismic refraction interpretation', SEG.

Park, C.B., Miller, R.D., and Xia, J., 1998; Ground roll as a tool to image near-surface anomaly:SEG Expanded Extracts, 68th Annual Meeting, New Orleans, Louisiana, 874-877.

Park, C.B., Miller, R.D., and Xia, J., 1999; Multi-channel analysis of surface waves (MASW): Geophysics, May-June issue.

Redpath, B.B., 1973; 'Seismic refraction exploration for engineering site investigations', NTIS, U.S. Dept. of Commerce

Sheriff, R.E., and Geldart, L.P., 1982;Exploration seismology, volume 1: Cambridge University Press, 253 pp.'The blind zone problem in engineering geophysics', Geophysics, 24, pp 359-365.

APPENDIX A: DETAILED METHODOLOGY

A combination of geophysical techniques was used to provide a high quality interpretation and reduce any ambiguities, which may otherwise exist.

Seismic Refraction Profiling

Principles

This method measures the velocity of refracted seismic waves through the overburden and rock material and allows an assessment of the thickness and quality of the materials present to be made. Stiffer and stronger materials usually have higher seismic velocities while soft, loose or fractured materials have lower velocities.

Seismic profiling measures the p-wave velocity (Vp) of refracted seismic waves through the overburden and rock material and allows an assessment of the thickness and quality of the materials present to be made. Stiffer and stronger materials usually have higher Vp velocities while soft, loose or fractured materials have lower Vp velocities. Readings are taken using geophones connected via multi-core cable to a seismograph.

Data Collection

A Geode high resolution 24 channel digital seismograph, 24 10HZ vertical geophones and a 10 kg hammer were used to provide first break information, with a 24 take-out cable (2m spacing). Equipment was carried was operated by a two-person crew.

Readings are taken using geophones connected via multi-core cable to a seismograph. The depth of resolution of soil/bedrock boundaries is determined by the length of the seismic spread, typically the depth of resolution is about one third the length of the profile (e.g. 46m profile ~16m depth). Shots from seven different positions were taken (2 x off-end, 2 x end, 3 x middle) to ensure optimum coverage of all refractors.

Data Processing

First break picking in digital format was carried out using the FIRSTPIX software program to construct p-wave (Vp) traveltime plots for each spread. Velocity phases were selected from these plots using the GREMIX software program and were used to calculate the thickness of individual velocity units. Topographic data were input. Material types were assigned and estimation made of material properties.

First break picking in digital format was carried out using the FIRSTPIX software program to construct traveltime plots for each spread. The recorded data was processed and interpreted using the GREMIX software program. GREMIX interprets seismic refraction data as a laterally varying layered earth structure. It incorporates the slope-intercept method, parts of the Plus-Minus Method of Hagedoorn (1959), Time-Delay Method, and features the Generalized Reciprocal Method (GRM) of Palmer (1980). Up to four layers can be mapped; one deduced from direct arrivals and three deduced from refractions. Phantoming of all possible travel time pairs can be carried out by adjusting reciprocal times of off shots. Material types were assigned and estimation made of material properties, cross-referenced to borehole data.

Approximate errors for Vp velocities are estimated to be +/- 10%. Errors for the calculated layer thicknesses are of the order of +/-20%. Possible errors due to the "hidden layer" and "velocity inversion" effects may also occur (Soske, 1959).

Geophysical Investigation Parkgate St. Site For Ground Investigations Ireland Limited

Multichannel Analysis of Surface Waves (MASW)

Principles

The Multi-channel Analysis of Surface Waves (MASW) (Park et al., 1998, 1999) utilizes Surface waves (Rayleigh waves) to determine the elastic properties of the shallow subsurface (<15m). Surface waves carry up to two/thirds of the seismic energy but are usually considered as noise in conventional body wave reflection and refraction seismic surveys. The penetration depth of surface waves changes with wavelength, i.e. longer wavelengths penetrate deeper. When the elastic properties of near surface materials vary with depth, surface waves then become dispersive, i.e. propagation velocity changes with frequency. The propagation (or phase) velocity is determined by the average elastic property of the medium within the penetration depth. Therefore the dispersive nature of surface waves may be used to investigate changes in elastic properties of the shallow subsurface. The MASW method employs multi-channel recording and processing techniques (Sheriff and Geldart, 1982) that have similarities to those used in a seismic reflection survey and which allow better waveform analysis and noise elimination.

To produce a shear wave velocity (Vs) profile and a stiffness profile of the subsurface using surface waves the following basic procedure is followed:

- (i) a point source (e.g. a sledgehammer) is used to generate vertical ground motions,
- (ii) the ground motion is measured using low frequency geophones, which are disposed along a straight line directed toward the source,
- (iii) the ground motion is recorded using either a conventional seismograph, oscilloscope or spectrum analyzer,
- (iv) a dispersion curve is produced from a spectral analysis of the data showing the variation of surface wave velocity with wavelength,
- (iv) the dispersion curve in inverted using a modelling and least squares minimization process to produce a subsurface profile of the variation of Surface wave and shear wave velocity with depth.

Data Collection

1D MASW profiles were recorded at each s seismic refraction location. The acquisition configuration was the same as used for the seismic refraction acquisition.

Data Processing

MASW processing was carried out using the SURFSEIS processing package developed by Kansa Geological Survey (KGS, 2000). SURFSEIS is designed to generate a shear wave (Vs) velocity profile.

SURFSEIS data processing involves three steps:

- (i) Preparation of the acquired multichannel record. This involves converting data file into the processing format.
- (ii) Production of a dispersion curve from a spectral analysis of the data showing the variation of Raleigh wave phase velocity with wavelength. Confidence in the dispersion curve can be estimated through a measure of signal to noise ratio (S/N), which is obtained from a coherency analysis. Noise includes both body waves and higher mode surface waves. To obtain an accurate dispersion curve the spectral content and phase velocity characteristics are examined through an overtone analysis of the data.
- (iii) Inversion of the dispersion curve is then carried out to produce a subsurface profile of the variation of shear wave velocity with depth.

12

The bedrock P-wave velocities were converted to S-wave velocities using the following equation:

V_s=(((Vp^2)-2*v*(Vp^2))/((1-v)*2))^0.5

Where V_s = S-wave velocity in m/s, Vp = P-wave velocity in m/s and v = Poisson's ratio.

The Gmax values are calculated at each S-wave location using an overburden density of 2,000Kg/m³. The Gmax calculation is: **Gmax (Mpa) = Vs²*(\rho / 1000000)** where ρ = density (kg/m³).

Vs values and corresponding soil cohesion ranges are summarised in Figure A.1.

Figure A.1: Shear-wave velocity and corresponding soil cohesion.

Spatial Relocation

All the geophysical investigation locations were acquired using Trimble Geo 7X high-accuracy GNSS handheld GPS system using the settings listed below. This system allows collecting GPS data with c.20mm accuracy.

13

Projection:	Irish Transverse Mercator	
Datum:	Ordnance	
Coordinate units:	Meters	
Altitude units:	Meters	
Survey altitude reference:	MSL	
Geoid model:	Republic of Ireland	

APPENDIX B: DRAWINGS

The information derived from the geophysical investigation is presented in the following drawings:

AGP19036_01	Aerial Photo - Geophysical Locations	1:1250	@ A4
AGP19036_02	Figure 1: Exterior Profile west of the building Figure 2: Exterior Profile north of the building	1:400 1:400	@ A3 @ A3
AGP19036_03	Profile S3 in centre of building	1:400	@ A4

